
ET Surface

ET Surface is a set of tools for ArcGIS that enable the users to create surfaces and perform surface analysis without the need

of 3D or Spatial Analyst extensions. The only requirement is an ArcGIS license (ArcView, ArcEditor or ArcInfo).

ET TerrainViewer - a stand alone application included in ET Surface allows 3D visualization of surfaces (PolygonZs, TINs and

Rasters), features stored in shapefiles. It also allows draping aerial photography over a surface.

Versions 4.0 and above include ToolBox implementation of most of the functions. This allows running the functions from within

Arc Toolbox environment, including them in models or using them in Python or VB scripts.

In version 5.0 most of the raster functions were completely rewritten with optimization for speed and memory use.

Main Features:

Interpolate Surface

ESRI TIN and PolygonZ TIN from points, polylines or polygons.

Modify ESRI TIN and PolygonZ TIN by adding data from points, polylines or polygons.

Break lines (Hard and Soft) are supported for ESRI TIN.

Contours to Raster

IDW

Density

TIN Surface Analysis - Slope, Aspect, Visibility, Volume, Cut/Fill

Raster Surface Analysis - Slope, Aspect, Hillshade, Viewshed, Volume, Cut/Fill, Interpolate Contours

Raster Distance Analysis - Euclidean Distance, Direction and Allocation, Weighted Voronoi (Thiessen) allocation, Cost

Distance and Allocation

Raster Processing - Clip, Erase, Smooth, Clean Boundaries, Resample

Raster Calculator - enables the user to perform complex mathematical calculation on rasters.

Zonal Statistics

Profile Extractor

Create profile of multiple surfaces (ESRI TIN, Raster, PolygonZ TIN)

Draw profiles for:

User drawn cross-section line

Selected polyline or polygon graphic

Selected polyline or polygon feature

Interactive Profile Window

Zoom

Pan

Identify

Label data points

Animate profile for cross-sections moving along route

Draw profile directly on the data frame

Draw profile on the layout preserving the scale of the data frame

Export profile to a text file, an image, point or polyline feature class

Line of Sight (LOS) tool

Draw on View and in Profile Window

Set offset for the Observer and Target

Apply Earth curvature corrections

Apply light refraction corrections

Apply radio wave corrections 

Animate rotation of the Observer

Digitize 3D features or graphics with elevation extracted from ESRI TIN, Raster, PolygonZ TIN

Copyright © Ianko Tchoukanski



ET Surface Installation

Installation instructions 

Note that you have to be logged  as an Administrator on the machine you are installing ET Surface

Important note: If you have ET Surface installed and plan to uninstall ArcGIS you MUST first uninstall ET Surface

Close ArcMap

If you have a previous version of ET Surface installed, uninstall it first.

Make sure that you have the sub-version of ET Surface appropriate for your ArcGIS version

Unzip ETSurfaceXX.zip - two files will be extracted from the archive:

setup.exe

ETSurfaceXX_YY_Setup.msi

Run setup.exe - a simple installation wizard will guide you through the process.

A new program group with 3 items will be created

ET Surface User Guide

Readme

Terrain Viewer

If you start ArcMap the ET Surface toolbar should be already loaded. 

For pre ArcGIS 10 - Go to View ==> Toolbars and select the toolbar.

For ArcGIS 10 - Go to Customize ==>Toolbars and select the toolbar.

Note:

ET Surface runs in DEMO mode until registered.

The Demo mode has the following limitations

Build TIN function will use the first 500 points of the input feature class only.

Profiling, Line of Sight, and Digitize Z features functions will use the first 50 data points only

The functions that use surface datasets will work on surfaces with:

ESRI TIN - less than 1000 triangles

TIN PolygonZ - less than 1000 triangles

The raster functions do not have restriction on size, but the resulting rasters (if with

more than 10,000 cells) will have a stamp with NoData cells.

The functions for which the main data source are feature classes, will not work on feature

classes with more than 100 features. 

The registered version does not have the above restrictions.

See How to Register ET Surface for registration information

Copyright © Ianko Tchoukanski



ET Surface - How to load in Arc Toolbox

The ET Surface tools can be loaded as any standard geoprocessing tool. The Setup program of ET Surface will register the

DLL  with the system and the tools in the DLL will be registered with the correct component categories. The Setup will also

copy in the installation folder of the software the ET Surface Toolbox

Load all ET Surface tools:

Right-click the Arc Toolbox folder inside the Arc Toolbox window and click Add Toolbox.1.

Navigate to the folder where ET Surface is installed and select ETSurface.tbx file2.

Click Open. 3.

Load a tool into your own toolbox or toolset:

Right-click the toolbox or toolset where you want to add system tools, point to Add, and click Tool.1.

In the dialog find and expand ET Surface Geoprocessing toolbox and toolsets in it. Check the tools you would like to

add to your toolbox or toolset. If you check the toolbox, all tools within the toolbox will be added. If you check a toolset

within the toolbox, all tools within the toolset will be added.

2.

Click OK. 3.

Since the usage of the ET Surface tools is exactly the same as the standard tools provided with ArcGIS, we highly recommend

you to have a look at "Geoprocessing in ArcGIS" in the desktop help

Copyright © Ianko Tchoukanski



ET Surface -  How To Register

A. Single Use license

The registration process involves three steps 

Visit ET Surface page on ShareIt.com and purchase the software. You will receive a reference number for your order.1.

On the ET Surface Toolbar or ET Surface Main Dialog go to Help ==>  Request License Key button. Fill the small form

- all the fields are required.

User Name 

Company 

ShareIt reference number ( see Step 1)

After filling the form there are two options to chose from:

Create Key Request File will write all the information to a file (*.et3). Send this file to register@ian-ko.com and

in 24 hours you will receive the Key File that will unlock the full version

Send Key Request via e-mail. This option will open you default e-mail program with all necessary information.

You just have to click the SEND button

Important note:

Do not change anything in the request file or the body of the generated message. It will cause the registration process

to fail.

2.

When you receive the Key File , save the attachment (*.ets file) to you hard disk. Click on Register button (Help ==>

Register). In the form, click on Load Key File button. Select the received file. The program will be registered.

3.

Important notes:

You need to be logged as an administrator on the PC

Do not change anything in the Key File. It will cause the registration process to fail.

B. Concurrent license

ET LicenseManager should be installed on a PC on your network

Contact your system administrator and get the following information:

The Name or IP address of the PC where the ET LicenseManager is installed

The TCP port on which the ET License Manager communicates

1.

Go to Help ==> Connect To License Server2.

In the dialog fill

License Server - fill the network name or the IP Address of the license server

TCP Port - fill the port number

3.

Click on the Test License Server button4.

If a connection to the license server is established, click OK to save the settings. You are ready to work.5.

If the test fails - contact your system administrator.6.

Copyright © Ianko Tchoukanski

mailto:register@ian-ko.com


Types of Surfaces

The functions and tools of ET Surface can be used in on 2 types of surfaces - Rasters and TINs

Rasters represent the surface using a matrix of uniformly sized square areas. Each square, which may be referred to as a cell

or pixel stores a single value that represents what the surface represent. The most common case of the value of a cell is

elevation of a terrain, but it can be many other things (temperature, rainfall, etc.). Each cell of a georeferenced raster

represents a physical cell in the space. The size of the cells define the resolution of the raster - smaller cells - better resolution -

larger size of the raster.

The TIN model represents a surface as a set of contiguous, non-overlapping triangles. Within each triangle the surface is

represented by a plane. The triangles are made from a set of points called mass points.

See TIN Notes for more information about TINs

ET Surface can generate only a TIN surface, but most of the functionality can be used with both Raster and TIN surfaces.

Raster formats that can be used:

ESRI Grid

ERDAS Imagine images (.img)

Tagged Image File Format (TIFF) image (.tif)

Personal Geodatabase raster

File Geodatabase raster

TIN Formats that can be used:

ESRI TIN - proprietary format. Surfaces created by 3D Analyst or Arc/Info TIN module or ET Surface version 4.0.

PolygonZ TIN - A TIN Surface stored in a PolygonZ dataset (Shapefile, Personal or File Geodatabase). Surfaces

created by ET GeoWizards and ET Surface.

A list of the functions of ET Surface and surfaces on which they can be used

Copyright © Ianko Tchoukanski



ET Surface and Projections

This topic will discuss some issues concerning the projections of the surface datasets and the analysis performed on these

datasets. 

Coordinate System Types ( from ArcGIS desktop help)

A Geographic Coordinate System (GCS) uses a three-dimensional spherical surface to define locations on the earth. A

GCS is often incorrectly called a datum, but a datum is only one part of a GCS. A GCS includes an angular unit of

measure, a prime meridian, and a datum (based on a spheroid).

A point is referenced by its longitude and latitude values. Longitude and latitude are angles measured from the earth's

center to a point on the earth's surface. The angles often are measured in degrees (or in grads). 

A projected coordinate system is defined on a flat, two-dimensional surface. Unlike a geographic coordinate system, a 

projected coordinate system has constant lengths, angles, and areas across the two dimensions. A projected

coordinate system is always based on a geographic coordinate system that is based on a sphere or spheroid. 

In a projected coordinate system, locations are identified by x, y coordinates on a grid, with the origin at the center of

the grid.

Coordinate systems and 3D analysis. 

The Geographic Coordinate System provides a way to store common coordinates for locations anywhere in the world.. Due to

this fact it is used in many areas (Location based services, navigation, etc.).

If however we want to measure distances and areas on data in a GCS we are facing an obvious problem - the units of measure

of a GCS are actually angles - a distance of 2.5 Decimal Degrees does not mean much, an area of 1.5 "Square Decimal

Degrees" (if such term existed) means even less.

One can argue that using GCS we can calculate distances and areas on the Spheroid and the results will be in meaningful

distance/area units (meters, feet, etc..) and more accurate than the results derived from projected data. This might be true, but

only on large scale (continental) data where the projected data will be more distorted by the single projection used to represent

it in Cartesian coordinates.

If we take into consideration the geographic extent of the surface data that is normally used for 3D analysis, we can conclude

that an appropriately selected projection for the location of the data will give us better results.

Based on the discussion above, the functions of ET Surface work

On surface data in any Projected Coordinate System.

Surfaces (Raster, ESRI TIN, PolygonZ TIN) that are in a Geographic Coordinate System, need to be projected to a

suitable projection first.

In order to get correct results for Slope,  Volume and 3D Area the Z units should be the same as the units of the spatial

reference of the data. 

Copyright © Ianko Tchoukanski



ET Surface -  Raster functions performance and limitations

The performance of the raster functions of ET Surface depends on the specification of the computer (Processor & RAM). There

are however several other factors that influence the performance depending on the function.  All function check at the beginning

whether whether the memory available will be enough to complete the function. Some general considerations:

Do not use smaller cell size than required for the task. The cell size defines how much memory will be needed and

influences significantly on the performance of the functions. It is a good idea to calculate the approximate number of

cells of the output raster - based on the extent of the output -  Number Cells = Width x Height / CellSize2

If you are going to execute a function that requires a lot of resources

Close the unnecessary applications to free some memory.

Restart ArcMap with a new project.

Load only the data necessary for the function

Execute the function.

The table below tries to indicate the factors that influence the performance and the limitations in number of cells for each

function. Common factors influencing the performance and keys used in the table.:

Distribution of the input points - normally the more even the distribution - the better the performance - DP

Number of input points  - NP

Number of cells in the input raster - NCI

Cell Size the smaller the cell size, the larger the output - CS

Difference between the minimum and maximum weight for the cost functions - DW

Contour Interval - CI

Smoothing -SM

Extent of the output - EO

All the limits below tested on standard Pentium PC with 2 Gigabytes of RAM

Indication for the limits in the table below - a raster that covers 100kilometers by 100kilometers with cell size of 20 meters will

have 25,000,000 cells.

In ET Surface 5.0 most raster functions were rewritten with optimization for speed and memory use.  The table shows the

indicative limit for raster sizes in previous versions and ET Surface 5.0

 

Function Performance depends on
Indicative limit - number of cells

Previous ET Surface 5.0

Surface Interpolation

Contour To Raster CS 30,000,000 100,000,000

IDW DP, CS 45,000,000 100,000,000

Raster Surface Analysis

Raster Slope NCI No Limit No Limit

Raster Aspect NCI No Limit No Limit

Raster Hillshade NCI No Limit No Limit

Interpolate Contours from Raster NCI, CI, SM No Limit No Limit



Viewshed NP, NCI 45,000,000 100,000,000

Cut/Fill Analysis NCI No Limit No Limit

Raster Volume NCI No Limit No Limit

Raster Distance Analysis

Euclidean Distance DP, CS 45,000,000 No Limit

Euclidean Direction DP, CS 45,000,000 No Limit

Euclidean (Voronoi) Allocation DP, CS 45,000,000 No Limit

Weighted Voronoi Allocation DP, CS 45,000,000 100,000,000

Cost Allocation (Cost from source) DP, CS, DW 45,000,000 No Limit

Cost Distance (Cost from source) DP, CS, DW 45,000,000 No Limit

Cost Allocation (Cost from raster) DP, CS, DW 30,000,000 No Limit

Cost Distance (Cost from raster) DP, CS, DW 30,000,000 No Limit

Raster Processing

Clip Raster with Envelope NCI No Limit No Limit

Clip Raster with Polygons NCI No Limit No Limit

Erase Raster with Polygons NCI No Limit No Limit

Smooth Raster NCI No Limit No Limit

Clean Boundaries NCI No Limit No Limit

Create Constant Raster CS, EO No Limit No Limit

Create Random Raster CS, EO No Limit No Limit

Change Raster Data Type NCI No Limit No Limit

Copyright © Ianko Tchoukanski



ET Surface Toolbar

 

ET Surface toolbar  is a container of all the functionality of the software

ET Surface Menu has the global functions of the software grouped in several sub-menus.

The Profiling tools  work on multiple surfaces. Only the surfaces visible in ArcMap table of contents

(TOC) will be used by the profiling tools

The Select Surface Layer combo box 

 

 is used to set current surface layer for use with the Line Of Sight (LOS)  tool and the tools for digitizing 

  3D features.

Manage graphics tool  will help you to select graphics by name or type, delete selected graphics or group them.

The Help Menu can be used to access the User Guide, register the software, view the Log file

Copyright © Ianko Tchoukanski



ET Surface Hydrological Functions

ET Surface 6.0 introduces a set of functions for hydrological analysis.

They are used to model the flow of water over the terrain represented by a raster Digital Elevation Model (DEM).  The availability

of Digital Elevation data has increased significantly over the last years.  The advances in technology have allowed also for

increased accuracy and resolution.

The Hydrology functions in ET Surface include the following:

Analyse the DEM Raster for areas for which the flow can not be determined (NoFlow areas) - sinks and flat areas

Remove NoFlow areas and create "Depressionless" DEM.

Model the flow of water over the DEM and create Flow Direction and Flow Accumulation rasters

Delineate Stream Network from Flow Accumulation rasters, assign Strahler Stream Order and Stream Link IDs to stream 

sections.

Create Stream polyline features and Node point features of the Stream network.

Delineate Watersheds

The starting point for any hydrological analysis is a Digital Elevation Model.  Usually there are a number of steps which have to

be followed for performing a specific task.  The following flowchart shows the sequence of steps for using the provided

functionality:

 



DEM Pre-Processing

The most common digital data of the Earth's surface is raster digital elevation models (DEMs). And because the flow of water is

determined by the terrain it has become more common to use DEMs for the analysis of hydrological processes.

All the functions in the Hydrology group are based on a raster Digital Elevation Model.

In order to use a DEM for hydrologic analysis it is important that the flow of water can be defined for each cell of the DEM

raster and then following the flow direction it is possible to reach the DEM edge.

Depressions (also known as pits or sinks) are areas in the DEM which do not allow the flow of water to an outlet at the edge of

the DEM.  They may be representative of the natural terrain, but could also be result from the technical procedures in the DEM

production.

In order to use a DEM for hydrological modeling, it is important to eliminate depressions.

ET Surface includes a function for finding the problem areas (NoFlow Areas) and a function for removing them (Fill

Depressions).

NoFlow Areas analyses the DEM by inspecting each cell and its 3x3 neighborhood and marks the NoFlow Areas. 

An output value of 1 indicates that the cell belongs to a flat area - there is no lower neighboring cell and the lowest neighbor

has the same elevation.

An output value of 2 indicates a sink - meaning that all neighboring cells are with higher elevation.

An example of the NoFlow Areas output - Flat areas with light blue and Sinks with dark blue.

Fill Depressions removes the NoFlow areas from the DEM using the algorithm proposed by Planchon and Darboux (2001).  It

removes sinks and flat areas by increasing the elevation of NoFlow cells in such a way that all inner cells of the DEM have a

defined flow.  The resulting DEM can be called "depressionless"

In flat areas first the cells with defined flow at the boundary are established and then the elevation of neighboring cells is

increased with a minimal slope.

Filled depression view in the Profile Extractor - the red area shows cells where a depression was filled.



 



Flow Direction and Accumulation

There are a number of algorithms for determination of flow over a DEM.  At present ET Surface has implementations for two of

them: 

Deterministic 8 (D8) proposed by O'Callaghan and Mark (1984). 

Deterministic Infinity (D-infinity) proposed by Tarboton (1997). 

The D8 method

The D8 method is the most widely used and has been implemented in many software packages. In this model the flow direction

for each cell is determined  according to the steepest descent to one of its 8 neighboring cells.  The direction values are most

often coded as 1,2,4,8,16,32,64 and 128 according to the figure below:

Thus if the steepest descent of a cell is to the left, its Flow direction will be coded as 1, if it is to upper right, it will be coded as

32.  The steepest descent is calculated by dividing the elevation difference by the distance between the cell centers. 

Once the Flow Direction is defined, the next step is to determine the Flow Accumulation.  The value in the Flow Accumulation

raster represents the number of upstream cells from which the water flowing downstream will pass through the current cell.  The

calculation is done from the Flow Direction raster starting from the top - the cells to which there is no contribution and passing

their accumulated value downslope.

In ET Surface the Flow Accumulation values represent number of cells.  The actual contributing area for the cells can be

determined by multiplying the accumulation value by the area represented by a cell.

Thus for a raster with cell size 1 x 1 meter the values are directly square meters.  For a cell size of 10 x 10 meters, the

accumulated value must be multiplied by 100 to obtain the contributing area.

Cells with a high value in the Flow Accumulation raster indicate high concentration of water and can be used for identification of

streams.

The D-infinity method

The D-infinity method was suggested by Tarboton (1997).  In it Flow Direction is defined as the angle of the steepest descent

determined by analysis of 8 triangular facets formed by the 3x3 cell neighborhood.

The triangular facets are formed by the centers of the center cell and its 8 neighbors. The flow direction for a particular facet is

the direction of the steepest downward slope on the facet.  The flow direction for the cell is the one with the highest magnitude of

all the eight facets.  The possible values are in decimal degrees from 0 to 360 starting from North in clockwise direction.

For example a value of 90 indicates flow to the East and a value of 225 - flow to South West.



The D-infinity method allows flow divergence - the flow from a cell will either go to one or two of the neighboring cells.  This is a

better representation of water flow on divergent slopes. 

Thus a flow accumulation value of 100 in a cell can be distributed between two neighboring cells transferring respectively 65 to

the one and 35 to the other. 

An example of Flow Accumulation D-infinity result (above) and Flow Accumulation D8 (below).

Note the dispersion of flow in the D-infinity result compared with the concentrated flow in D8.

 



Delineation of Stream network

The Flow Accumulation raster is used for Stream delineation. As we saw previously, the Flow Accumulation raster values

represent the number of upslope cells flowing through each cell.  By applying a Threshold value to the Flow Accumulation

raster we can determine the cells which form a Stream network.  All cells with Flow Accumulation value above the threshold are

considered to be part of a stream.

The threshold is called Stream Initiation Threshold (also Channel Initiation Threshold).  It represents the minimum contributing

area required to initiate and maintain a Stream.  The determination of the threshold value will depend on several factors

including the type of the terrain, climate, soils and the DEM resolution.

Reviewing existing data and maps for the area and experimentation with different values are helpful for the determination of the

threshold value.  Lower values will result in denser  Stream Network.

The following images show the difference in Stream density at Threshold values of 1000 and 100



When using Flow Accumulation raster produced with the D8 method, the increase of values downslope is guaranteed, since

each cell can only flow to one neighbor.

This is not the case with Flow Accumulation created by the D-infinity method.  There the accumulated value for a cell can be

distributed to two neighboring cells, thus causing reduction of the accumulation.  This can lead to disconnected streams after

the Stream Initiation Threshold is applied.

To circumvent this the D-infinity Flow Accumulation function in ET Surface provides the option to use the D8 accumulation

method once the Threshold is reached.  In this case the user has to specify the Threshold and provide a D8 Flow Direction

raster as input.

 

Stream functions

The Stream Link function assigns unique values to sections of the Stream Network.  It uses as input the Streams raster and the

D8 Flow Direction raster. 

A Link is each section of Stream between two junctions, the stream head and a junction or a junction and the outlet.

An example of Stream Link output.

The Strahler Stream Order function assigns an order to each stream segment according to the system proposed by Strahler

(1952). The order of the stream section starting at the stream head is assigned to 1. The order increases by 1 only when two

sections of the same order intersect.  For example if two sections of order 1 intersect, the following section will be assigned an

order of 2.  When two sections of different order intersect, the following section preserves the higher order.

An example of Strahler Stream Order result.



The Stream Raster To Features function converts a Stream raster to a polyline feature class and optionally creates a point

feature class with the Nodes of the stream network.  It requires the D8 Flow Direction raster as input to determine the correct

direction of flow.

Each polyline in the output feature class represents a section of the stream and is assigned a unique ID.  The start and end

nodes are recorded as attributes.  The direction of the polyline is always downstream.

An example of Stream Raster to Features output - Streams and Nodes.



 

Watershed

The Watershed function delineates the area contributing flow to a set of Outlet points.  The Outlet is the lowest point in the

Watershed. 

Watersheds are delineated from the D8 Flow Direction raster. An optional Outlets feature class can be specified as input. In this

case Watersheds are delineated for the Outlet points. An ID is assigned to each Watershed from a field in the Outlets feature

class.

If no Outlet points are specified, all Outlets for the DEM are determined (the points at which flow leaves the DEM) and

Watersheds are delineated for them.  In this case the Watersheds are assigned unique generated values starting from 1.

An example of Watershed output using Outlet points .



If Outlet points are specified it is recommended to ensure that they are within cells with sufficient flow to delineate a reasonable

Watershed.  Otherwise it is possible only a few cells (or even just one) to be delineated.

For this the Snap Pour Points function can be used.  It allow the Outlet points to be moved within a specified distance based on

the values of a reference raster.

There are three Snap options:

Snap to nearest Stream

Snap to lowest Elevation

Snap to highest Flow Accumulation

The relevant raster and maximum snap distance have to be provided as input parameters.

An example of Snap Pour Points using the Stream option - initial points in green and after snapping in red.



 

Streams And Watershed

The Streams And Watershed function allows the creation of Stream and Node features as well as a Watershed raster from a

DEM, The function calculates as temporary datasets the required Flow Direction and Flow Accumulation rasters based on the

selected flow model (D8 or D-infinity).

 If the D-infinity flow method is selected, the flow accumulation below the specified Stream Initiation Threshold is determined by

the D-infinity method and above the threshold the D8 method is used.

The Watershed Raster represents Watersheds for all Outlet points determined from the Flow Direction raster and Watershed

IDs are automatically generated. 

An example of Streams And Watershed output - Streams and Nodes Features and Watershed raster.



 

References:

O’Callaghan, J. F., and Mark, D. M., (1984). "The extraction of drainage networks from digital elevation data", Computer Vision,

Graphics and Image Processing, Vol. 28, pp. 328-344.

Planchon, O. and F. Darboux, (2001), "A fast, simple and versatile algorithm to fill the depressions of digital

elevation models", Catena, 46: 159-176. 

Tarboton, D. G., (1997), "A New Method for the Determination of Flow Directions and Contributing Areas in Grid Digital

Elevation Models", Water Resources Research, 33(2): 309-319

Tarboton, D. G., R. L. Bras and I. Rodriguez-Iturbe, (1991), "On the Extraction of Channel Networks from Digital Elevation

Data", Hydrologic Processes, 5(1): 81-100.

 

 

Copyright © Ianko Tchoukanski



ETS Hydrology Toolbar

 

ETS Hydrology  toolbar  is introduced in ET Surface version 6.0 with the Hydrology group of functions

At present it contains two tools and will be expanded with the development of the Hydrology group of functions.

The selection Combo box allows the selection of a Raster which will be used by the tools for performing the tool function.  At

present both available functions require a raster representing Flow Direction D8.

  The Watershed tool is used to delineate a Watershed for a selected point on the surface. The delineation is based on a D8

Flow Direction raster which has to be selected in the Combo box.

For better visualization the DEM raster should be displayed on top of the Flow Direction raster. 

The delineation is usually done for a point on a stream and if there is no Stream layer available sometimes it is difficult to select

the correct location.  In such a case it is useful to use the Flow trace tool to create a Flow path and then use the Watershed tool

based on the flow path. 

An example of the Watershed tool output.



  The Flow Trace tool is used to create a Flow path for the water from the specified point over the terrain to the Outlet.  A Flow

Direction D8 raster has to be selected in the Combo box in order to use the tool.

An example of the Flow Trace tool output.

Both tools create temporary rasters in the ET Surface Temp folder.

Copyright © Ianko Tchoukanski



ET Surface Main Dialog

The Main Dialog of ET Surface gives access to all the functions of the software except the Profile Extractor and the Terrain Viewer.

Selecting the tab for specific category of functions will display a list of all functions in this category.  Next to each function there is an icon indicating the status of the

function

 indicates that the function is available with no limitations

 indicates that the software is not registered and if you run the function the limitations of the unregistered software apply

 appears when a licensed (or free) function is selected. Clicking on the icon will execute the function.

 appears when a non-licensed function is selected. Clicking on the icon will execute the function with the applicable to the unregistered software

limitations.

On the registered software only  and  icons should appear.

Clicking on the GO button will execute the selected function.

The User Guide is embedded in the main dialog - whenever you select a function, the Help Window will display the appropriate help topic. You can use the Help

button to hide or show the Help Window. 

The View Log button displays the entries recorded in the ET Surface log file. The dialog allows deleting the current entries. It is recommended to clean the log file on

regular intervals

The settings button opens the settings dialog of ET Surface. On this dialog you can view the current temp folder (where all intermediate datasets created by the

functions of ET Surface are stored) or set a new folder to be used for such purposes. ET Surface cleans the temp folder automatically, but it is a good practice to

delete all the contents of this folder from time to time.

Copyright © Ianko Tchoukanski



How to use ET Surface functionality in .NET

Most of the functions of ET Surface (starting from version 6.1) can be used in custom applications (stand alone, ArcGIS Add - Ins, custom controls).  The syntax of each ET Surface function is described in the main topic of the function ==>

.NET implementation

Quick start - VB.NET example for stand alone application

Prerequisites

ArcGIS - installed and licensed

ArcObjects SDK for NET Framework  - installed

Microsoft Visual Studio

ET Surface 6.1 and above - installed and registered

Start Visual Studio

Go to File ==> New ==> Project

In the dialog go to Installed Templates ==> Visual Basic ==> ArcGIS ==> Extending ArcObjects and select Windows Application (Desktop)

Give a name to your project and click OK

In the ArcGIS Project Wizards that will open select your product (Basic, Standard or Advanced) and click Finish

Go to Project ==> Properties ==> References:

Add reference ==> .NET ==> find ESRI.ArcGIS.Geodatabase and select it ==> Click OK

Add reference ==> Browse ==> navigate to the installation folder of ET Surface and select ETSurface61.dll. Make sure that  "Copy Local" is set to true in the reference properties.

Save the Assembly and Build it.

Create a button on your form and name it

Double click on the button to start editing the code

Paste the code below 

Imports ETSurface

Imports ESRI.ArcGIS.Geodatabase 

Public Class Form1 

 Private Sub BuildTin(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnBuildTin.Click

  Try

   Dim etsRun As ETSCore = New ETSCore

   Dim resultTin As ITin = Nothing

   'Input point shape filev    Dim shapePath As String = "F:/Test"

   Dim shapeName As String = "elevPoints.shp"

   Dim pointFC As IFeatureClass = featureClassFromString(shapePath, shapeName)

   'Output TIN name

   Dim outTin As String = "F:\Test\Output\areaTin4"

   'Elevation Field in the shape file

   Dim elevationField As String = "ET_Spot"

   'Triangulation method

   Dim triangulationTipe As String = "Mass points"

   'Run the function

   resultTin = etsRun.BuildEsriTin(pointFC, outTin, elevationField, triangulationTipe)

   If resultTin Is Nothing Then

     MsgBox("Tin creation failed")

   Else

     MsgBox("Tin created successfully")

   End If

  Catch ex As Exception

   MsgBox("Error:" & ex.Message)

  End Try

 End Sub

Private Function featureClassFromString(ByVal sPath As String, ByVal sName As String) As IFeatureClass

   Try

      Dim pFeatureClass As IFeatureClass

      Dim t As Type = Type.GetTypeFromProgID("esriDataSourcesFile.ShapefileWorkspaceFactory")

      Dim obj As System.Object = Activator.CreateInstance(t)

      Dim pWorkspaceFactory As IWorkspaceFactory = CType(obj, IWorkspaceFactory)

      Dim pFWS As IFeatureWorkspace = CType(pWorkspaceFactory.OpenFromFile(sPath, 0), IFeatureWorkspace)

      pFeatureClass = pFWS.OpenFeatureClass(sName)

      Return pFeatureClass

   Catch ex As Exception

      MsgBox("Error getting Feature Class" & ex.Message)

      Return Nothing

   End Try

End Function

End Class



 

Copy from the ET Surface installation folder all DLL files and EtgApp.exe to the folder of your application executable.

Make sure that the specified files and folders exist. Compile and run the application.

Below is another example - using the TinToRaster function:

Private Sub btnTinToRaster_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnTinToRaster.Click

   Try

      Dim etsRun As ETSCore = New ETSCore

      Dim resultRaster As IRasterDataset2 = Nothing

      'Input TIN

      Dim tinPath As String = "F:\Test\Output"

      Dim tinName As String = "areaTin"

      Dim areaTin As ITin = TinFromPath(tinPath, tinName)

      'Output Raster name

      Dim outRaster As String = "F:\Test\Output\areaRaster.img"

      'Output raster cell size

      Dim cellSize As Double = 20

      'Run the function

      resultRaster = etsRun.EsriTinToRaster(areaTin, outRaster, cellSize)

      If resultRaster Is Nothing Then

         MsgBox("Raster creation failed")

      Else

         MsgBox("Raster created successfully")

      End If

   Catch ex As Exception

      MsgBox("Error:" & ex.Message)

   End Try

End Sub

Public Function TinFromPath(ByVal sPath As String, ByVal sName As String) As ITin

   Try

      Dim pTin As ITin = Nothing

      Dim t As Type = Type.GetTypeFromProgID("esriDataSourcesFile.TinWorkspaceFactory")

      Dim obj As System.Object = Activator.CreateInstance(t)

      Dim pWF As IWorkspaceFactory = CType(obj, IWorkspaceFactory)

      Dim pTinW As ITinWorkspace = CType(pWF.OpenFromFile(sPath, 0), ITinWorkspace)

      If pTinW.IsTin(sName) Then

         pTin = pTinW.OpenTin(sName)

      Else

         MsgBox("Invalid Tin name")

         Return Nothing

      End If

      Return pTin

   Catch ex As Exception

      MsgBox("Error getting TIN" & ex.Message)

      Return Nothing

   End Try

End Function

Copyright © Ianko Tchoukanski



ET Surface -  Functions and surface types

Features

Function
Surface Type

Features
Raster ESRI TIN PolygonZ TIN

Profile Extractor     

Draw Cross-Section  

Profile for selected graphic  

Profile for selected feature  

Line of Site  

Digitize Z Geometries     

PointZ   

PolylineZ  

PolygonZ  

ET Terrain Viewer

  

ET Surface Functions     

Interpolate Surface

Build TIN    

Modify TIN  

Contours To Raster    

IDW    

Density    

Features To 3D  

Convert

ESRI TIN to PolygonZ TIN    

PolygonZ TIN to ESRI TIN    

TIN to Edges     

TIN to Nodes   

Polygon To Multipatch   

Multipatch To Polygon     

Features To Raster    

ESRI TIN To Raster    

TIN Surface Analysis

TIN Slope   

TIN Aspect     

Interpolate Contours     

Volume of TIN   

Volume of Polygons   

Cut/Fill Analysis   

Visibility Analysis  

Identify Peaks and Sinks   

Raster Surface Analysis

Raster Slope    

Raster Aspect    

Raster Hillshade    



Interpolate Contours from Raster    

Viewshed    

Cut/Fill Analysis    

Raster Volume    

Raster Distance Analysis

Euclidean Distance    

Euclidean Direction    

Euclidean (Voronoi) Allocation    

Weighted Voronoi Allocation    

Cost Allocation (Cost from source)    

Cost Distance (Cost from source)    

Cost Allocation (Cost from raster)    

Cost Distance (Cost from raster)    

Raster Processing

Clip Raster with Envelope    

Clip Raster with Polygons    

Erase Raster with Polygons    

Smooth Raster    

Clean Boundaries    

Create Constant Raster    

Create Random Raster    

Change Raster Data Type    

Raster Maths

Raster Calculator    

Replace NODATA    

Zonal Functions

Zonal Statistics    

3D Characteristics

PolylineZ Characteristics    

Polygon 3D Characteristics   

Analyze TIN    

Miscellaneous

Multiply Zs   

Offset Zs   

Split PolylineZ Based on Slope    

Clean Spikes in PolylineZ    

Copyright © Ianko Tchoukanski



ET TerrainViewer

Overview

ET Terrain Viewer allows you to view your GIS data in 3 dimensions.  You can load in the viewer Raster or TIN surfaces, Z enabled

features and even plain 2D features by draping them on an existing surface. Then you can navigate through the 3D environment using

several different navigation techniques.

Main features of ET Terrain Viewer are:

Simple and intuitive user interface.

The software was designed to be immediately intuitive and easy to learn

Hardware-accelerated 3D visualization.

ET Terrain Viewer utilizes the available graphics hardware to provide better performance.  Rendering is performed using

Direct3D.  A graphics card with hardware transformation and lighting (T&L) is recommended.

Mini-map of the loaded terrain.

An interactive mini-map with an overview of the terrain, showing the position and looking direction of the observer.

Multiple layer support.

ET Terrain Viewer can load and display multiple raster and / or shape files simultaneously.

Layer manipulation:

User-defined elevation, drape layer over terrain

Extrusion

Z-scale

Resolution reduction for increased performance.

Symbology supports gradient colors and textures based on elevation or custom attributes

Customizable point-markers for point layers

Navigation using both mouse and keyboard



Tools:

Identify space coordinates and elevation

Walking over the terrain at user-defined offset from the ground

Define a route and have the observer follow it automatically

Dynamic symbols in graphic layer

Customizable lights, skyboxes and fog effects

Export to popular graphics formats - JPEG, PNG, BMP.

Save a snapshot of the 3D image as a picture.

See what is new in version 3.0.

ET Terrain Viewer is a single-document application, and you can work with only one project at a time.  ET Terrain Viewer starts with an

empty project.  To add layers to your project, click Add Layer from menu Layers.  Note that the first layer you add to a project must be a

terrain layer - raster grid or TIN shape file.  To open an existing project, click Open Project from menu File.

Get started with the user interface.

To learn how to navigate the surface and use the tools, read section Tools and Navigation.

All ESRI products mentioned are trademarks of Environmental Systems Research Institute, Inc.

Copyright © Ianko Tchoukanski

 



ET TerrainViewer

What is New in version 3.0

The new featues of ET Terrain Viewer version 3.0 are:

Enhanced Symbology:

Symbology has been completely redesigned:

Symbols now can be defined for data attributes from the shapefile

For extruded layers, extrusion symbology can be configured separately

More than one texture symbol can be used per layer

Surface layers blend textures to improve visual effects

Image Layers

Three band rasters can be draped over the surface. See supported Data formats. 
Image layers need to be in the same coordinate system as the surface.

Graphic Layers

You can now add dynamic point markers to the surface, and store them as part of the project.

Tools

Two new tools - Journey and Graphic Layer Editor are now available. See section Tools for more information.

New Environment Settings

The intensity of illumination can now be adjusted. Further, you can set a sky box from a list of pre-defined skies - clear, light

clouds, heavy clouds, night. You can add fog to the scene to simulate the distance fading, or really bad weather.

All ESRI products mentioned are trademarks of Environmental Systems Research Institute, Inc.

Copyright © Ianko Tchoukanski

 



ET TerrainViewer

System requirements

Minimum requirements:

Intel Pentium 4 processor, running on 2.4GHz

1 GB RAM

Video card, supporting DirectX 9 with 64 MB video memory

OS: Windows XP with Service Pack 2

Recommended requirements:

Intel Pentium 4 processor, running on 3 GHz

2 GB RAM

Video card, supporting DirectX 9 with hardware transformation and lighting

All ESRI products mentioned are trademarks of Environmental Systems Research Institute, Inc.

Copyright © Ianko Tchoukanski

 



ET TerrainViewer

Configuring

General Options

The following options apply to all projects.

Fill Mode - defines how layers are rendered. Possible values are:

Solid (default) -  Layers are rendered as a solid surface.

Wire frame - Only the outline of layers is rendered.

Backgrounds - Here you can set the background colors of the 3D surface, and the mini-map.

Ramps

You can create a library of predefined color ramps, which you can use later to quickly create desired layer symbology.

Color ramps consist of at least two colors. You can add up to 50 colors in a color ramp. ET Terrain Viewer will automatically

create a gradient between the distinct colors of the ramp if the number of classes of the symbology is greater than the

number of distinct colors in the ramp.

Point Markers

You can create a library of point markers, which you can use later for multi-point layers.

Point markers can be created from:

Images - click button Add Image to select an image file. The image must be no larger than 128 x 128 pixels. It is

recommended that you use images in format PNG with defined transparency to achieve best effect.

1.

Symbols - you can add symbols from installed fonts on your computer. ET Terrain Viewer provides a font named

ETTV2, which contains a number of symbols. Click button Add Symbol, then select the desired font, select the color

for the symbol, and type in the desired symbol, or select one from the drop-down list. ET Terrain Viewer will convert

the symbol into a transparent image, and add it to the library.

2.

All ESRI products mentioned are trademarks of Environmental Systems Research Institute, Inc.

Copyright © Ianko Tchoukanski

 



ET TerrainViewer

Data Formats

ET Terrain Viewer supports the following data formats

Surface layers:

Raster datasets - currently single band rasters are supported only

ESRI binary grid

Erdas Imagine image (.img)

TIFF format (.tif)

ESRI Ascii Grid

TIN datasets - PolygonZ TIN created with ET Surface or ET GeoWizards and stored in a shapefile. Note that if you

have a data in ESRI TIN format, you can easily convert it in PolygonZ TIN using the functions of ET Surface

Feature layers - currently shapefiles are supported only:

Point, PointZ

Polyline, PolylineZ

Polygon, PolygonZ

Multi-Patch

Image Layers - three band rasters are supported:

Erdas Imagine image (.img)

TIFF format (.tif)

JPEG

Note that the data to be used needs to be in a projected coordinate system. All the layers loaded in a single project need to

have the same coordinate system.

For reading raster datasets ET TerrainViewer utilizes Geospatial Data Abstract Library (GDAL) by Frank Warmerdam. -

http://www.gdal.org/. GDAL is released under an X/MIT style Open Source license by the Open Source Geospatial Foundation.

All ESRI products mentioned are trademarks of Environmental Systems Research Institute, Inc.

Copyright © Ianko Tchoukanski

 

http://www.gdal.org/
http://trac.osgeo.org/gdal/wiki/FAQGeneral#WhatlicensedoesGDALOGRuse
http://www.opensource.org/
http://www.osgeo.org/


ET TerrainViewer

Working with Layers

Layer Types

ET TerrainViewer uses four types of layers

Surface layers - the sources of the surface layers can be

PolygonZ TIN created with the Build TIN function of ET Surface or ET GeoWizards

Raster datasets - see supported formats here

Feature layers - shapefiles with or without Z values.

Image layers - three-band raster datasets (e.g. aerial photos). See supported formats here.

Graphic layers - a custom layer of point markers, created manually. One graphic layer per project is supported.

The software checks the dataset that is loaded and determines the type of the layer automatically. The first layer loaded in a

new project must be a surface layer.

General Layer Properties

Z Values

You can define how the Z values of the layer will be derived.

Feature layers:

User-defined Z value: this options allows you to set a constant Z value for all features in the layer. The

option is not applicable for surface layers.

Drape to layer: this option forces ET Terrain Viewer to obtain the Z value for all features in a layer from the

elevation of the surface layer at the same location. A constant offset above the source surface can be set.

The option is not applicable for terrain layers.

From original shape file: If the Shapefile has Z values (PointZ, PolylineZ or PolygonZ  or Multi-patch).

Surface layers: The Z values are derived from the original data - pixel value for rasters, Z values of the triangles for

the PolygonZ TINs

Image layers: By default Z values are set to zero. Image layers can be draped to the surface layer.

Extrusion

Extrusion turns points into lines, and lines into walls. The lowest point of the extrusion is the minimum of the terrain layer. The

option is not applicable for terrain and image layers.

Z Scale

Z scale can be used to increase the Z values of the layer by multiplying them by the factor entered. The multiplying factor

cannot be zero. A multiplying factor of 1 basically negates scaling.

Resolution of Surface layers

You can adjust the level of details for terrain layers. 100% means that the layer is displayed with in its finest details. The

higher the resolution, the better is the quality of the layer; the lower the resolution, the better is the rendering performance of

the viewer.

ET Terrain Viewer automatically reduces the resolution of large terrain layers - raster or TIN. If your hardware can cope with



better details, you can increase the resolution once the layer is added to the project.

The option is applicable to terrain layers only.

Decreasing resolution of large terrains is a slow operation. The lower the desired resolution, the more it takes to simplify the

terrain.

All ESRI products mentioned are trademarks of Environmental Systems Research Institute, Inc.

Copyright © Ianko Tchoukanski

 



ET TerrainViewer

Layers Symbology

Symbology defines how a layer would be visualized on screen.

Definitions:

Marker - symbol for drawing point features or points on the graphic layer. Point markers can be created from:

Images - click button Add Image to select an image file. The image must be no larger than 128 x 128 pixels.

It is recommended that you use images in format PNG with defined transparency to achieve best effect.

Symbols - you can add symbols from installed fonts on your computer. ET Terrain Viewer provides a font

named ETTV2, which contains a number of symbols. Click button Add Symbol, then select the desired font,

select the color for the symbol, and type in the desired symbol, or select one from the drop-down list. ET

Terrain Viewer will convert the symbol into a transparent image, and add it to the library.

Texture - an image to be used for rendering features representing area (polygons, extrusion walls) features or

surfaces. Supported image formats are BMP, JPEG and PNG. The maximum size of textures is 512 x 512 pixels.

The texture images can be tiled to fill the polygons, so in order to avoid getting ”waffle” effect you need to use so

called seamless images. Some seamless textures are provided with the installation of the software.

Note: Using large and many textures or using finest tiling can have a negative impact on performance.

Color Ramp - array of colors used to render continuous data. ET Terrain Viewer provides several pre-defined color

ramps. The user can create new color ramps on the Options panel (Tools - Options - Ramps - Add) by providing two

or more colors to be used in the ramp.

Classification:

Single Value - A single symbol is used to render the entire surface or all features of the feature class.

Range - You specify the number of classes required. Initially, the software calculates the class breaks using the

minimum and maximum values and the number of classes requested, creating equal intervals. You can later to 

adjust the boundaries of the each interval. Adjacent intervals will be adjusted automatically to avoid fragmentation.

You can change the class symbol (color, texture or point marker) and class breaks by double clicking on a specific

class and change the values in the class properties dialog.

If the selected symbol is “Color” the current color ramp is used to populate the symbols for the different classes. If the

selected color ramp contains less colors than the number of classes, ET Terrain Viewer will generate the necessary

gradient colors to match the number of classes.

If “Texture” or “Point Marker” is selected the user needs to select texture image / point marker for each class.

Unique Values – If the attribute table of the feature class has a string or integer field that defines different categories

of features, unique value classification can be used. The user needs to select an integer or string field that has no

more than 50 unique values.

ET Terrain Viewer can display three major layer types:

Surfaces (Rasters or TINs) can be rendered only based on elevation. You can use for rendering a color ramp or 

texture images.

Features can be rendered based on their elevation or the values in the selected attribute field. Depending on the

geometry type the following symbol options are available:

Point – By default, when a new point layer is added to a project, the first marker from the list of predefined

markers is assigned to the layer. You can select a marker for the layer from the already existing ones, or

add a new one.

Polyline – Only color can be used.



Polygon – Colors and textures can be used.

Multipatch - Colors and textures can be used.

Polygon and Polygon Extrusion (the walls created if the features are extruded) - Colors and textures can be 

used.

Extruded Point (the lines created) - Only color can be used.

Georeferenced images (e.g. aerial photos) – the actual image colors. No symbology is available.

All ESRI products mentioned are trademarks of Environmental Systems Research Institute, Inc.

Copyright © Ianko Tchoukanski

 



ET TerrainViewer

User Interface

The user interface of ET Terrain Viewer consists of:

Menu and Toolbar

Project Manager

Layer information panel

Interactive mini-map

Main 3D display

Navigation cockpit

All ESRI products mentioned are trademarks of Environmental Systems Research Institute, Inc.

Copyright © Ianko Tchoukanski

 



ET TerrainViewer

System requirements



Default Navigation

By default, no tool is active, and you can navigate the surface using the keyboard and the mouse.

Keyboard:

Arrow Up - move the observer towards the target.

Arrow Down - move the observer backwards from the target.

Arrow Left - turn left.

Arrow Right - turn right.

Left Shift + Arrow Left - move the observer to the left.

Left Shift + Arrow Right - move the observer to the right.

Page Up - look up.

Page Down - look down.

Home - zoom in.

End - zoom out. 

 

Mouse:

Double-click - move the observer at the position of the double-click. If the elevation of the observer was

lower than the elevation of the terrain at the new position, the observer is elevated to be above the terrain.

Right-click - turn the observer to the point of the click.

Rotate Mouse Wheel forward - zoom in.

Rotate Mouse Wheel backwards - zoom out.

Mouse Navigation Tool

This tool enables more extensive navigation using the mouse:

Hold the left button and move the mouse to look around.

Hold the right button and move the mouse to pan the surface.

Hold the wheel and move the mouse up and down to change the elevation of the observer.

Navigation with arrow keys is active and the same as in Default Navigation mode.

Walk Mode

Use this tool to simulate a walking around the terrain, with the observer always being at a fixed offset from the terrain. You

can adjust this offset from the Walk Mode popup windows. The offset cannot be less than 3 elevation units. If the observer is

walking too close to the terrain, you can experience transparency of the nearest faces of the terrain.



Keyboard

Navigation using the keyboard is the same as in Default Navigation mode, except for zooming (Home and End),

which is disabled.

 

Mouse Navigation:

Hold the left button and move the mouse to look around.

Rotate mouse wheel to walk forwards or backwards.

All ESRI products mentioned are trademarks of Environmental Systems Research Institute, Inc.

Copyright © Ianko Tchoukanski

 



ET TerrainViewer

Tools

All commands on the toolbar are also accessible from the menu.

Start New Project

Start new project. If the current project has already contents added, the user will be prompted to save or discard the

changes.

Open Existing Project

Open an existing project. If the current project has already contents added, the user will be prompted to save or discard the

changes.

Save Project

Saves the current project.  To save the current project into a new file, click command Save as from menu File.

Add Layer

Add a new layer to the current project.  If the current project does not contain layers yet, this layer must be a terrain layer.

 See supported Data Formats for more details.

Remove Layer(s)

Remove the currently selected one or multiple layers from the current project.  You will be prompted to confirm the operation.

Identify Tool

Use this tool to get the coordinates of a point of the terrain surface.  When the tool is active, a popup window with

coordinates of the selected point will appear.  Left-click on the terrain to get coordinates of the point.  The popup window

displays the coordinates of the last selected point, and does not change when navigating.  Navigation works just like default

navigation, except for moving the observer by double click.  To move the observer to a desired location, use arrow keys or

the mini-map.

Mouse Navigation

Toggles mouse-navigation mode.  See section Navigation for more details.

Walk Mode

Toggles walk mode.  See section Navigation for more details.



Journey Tool

Use Journey tool to define a route through the terrain surface, and have the observer move along that route. The observer 

can either walk at a defined offset, fly over the route at a defined height. The default flight height is the maximum terrain

height plus 10%. You can import a route from a polyline shapefile, but only the first polyline in the Shapefile will be used.

Graphic Layer Tool

Use Graphic Layer tool to add and edit a graphic layer to your project. Graphic layers are special point layers, which allow

users to dynamically display point markers on the terrain surface. When Graphic Layer tool is active, you can use the left

mouse button to plant the selected symbol on the surface. Identical symbols are grouped together into groups. You can

delete the last added symbol, a whole group of symbols, or the whole graphic layer. You can change the symbol of a group

through the Layer Symbology dialog for the Graphic layer.

Graphic layers are saved within their project main file.

Zoom In

The function moves the observer closer to the scene, following the looking direction.

Zoom Out

The function moves the observer farther from the scene, following the looking direction.

Zoom To All

Reset the position of the observer to a point, from which all layers are visible in their full extent.

All ESRI products mentioned are trademarks of Environmental Systems Research Institute, Inc.

Copyright © Ianko Tchoukanski

 



ET TerrainViewer

Using the Project Manager

A project in ET Terrain Viewer is the current set of loaded layers with their properties. You can save your work in a project

and open it later. When you start ET Terrain Viewer, an empty project is automatically created. The first layer in a project

must be a terrain layer. This is either a raster file, or a TIN file of type Polygon with Z values, where polygons have three

vertices. See supported Data Formats for more information.

The Project Manager displays a list of all currently loaded layers. Layers are rendered in reverse order, i.e. the bottom layer

is rendered first, and the top layer is rendered last.

You can perform the following tasks:

Exclude a layer from rendering

Uncheck the check box next to the layer to exclude it from the scene. Check the box to render it again.

Change the order of layers

Layers are rendered in reverse order. Use drag and drop to reorder layers. Drag a layer to its new location upper or

lower in the list and drop it there.

Remove one or more selected layer from the current project

Click command Remove from the context menu to remove the selected layer(s).

Zoom to selected layer(s)

Click command Zoom to layer from the context menu. The command will zoom to the selected layer. If multiple

layers are selected, the command will zoom to the union extent of the selected layers.

Zoom to all layers in the project

Click command Zoom to all from the context menu to zoom to the union extent of all layers in the project.

Set layer properties

Click command Properties from the context menu to open the dialog with the properties of the selected layer. 
NOTE: In order to avoid incorrect data display all the layers loaded in a single project need to have the same coordinate system

and fall within the same extent.

All ESRI products mentioned are trademarks of Environmental Systems Research Institute, Inc.

Copyright © Ianko Tchoukanski

 



ET TerrainViewer

Using Mini-Map and Cockpit

Mini-Map

The mini-map displays an overview of the loaded terrain surface, as seen directly from above. Other layers are not visualized.

You can use the mini-map to quickly position the observer at a certain location on the terrain, or to change the looking direction.

Position the observer at a new location:

Double-click on the desired location on the mini-map

or

 

Click Set observer from the context menu of the mini-map.

Change the direction at which the observer looks

Click Look at Direction from the context menu of the mini-map.

Cockpit

The cockpit displays the current position of the observer in 3D space, and the point at which the observer is looking. The

cockpit is automatically updated during navigation.

You can change the coordinates of both the observer and looking target point to achieve precise control over the positioning

and orientation of the observer.

Further, you can use the Movement speed track bar to change the navigation speed. The speed is relative to the extent of

the terrain surface.

Note: After you have changed a value in any of the boxes of the cockpit, you need to click on the main 3D window in order to

be able to use the navigation controls

All ESRI products mentioned are trademarks of Environmental Systems Research Institute, Inc.

Copyright © Ianko Tchoukanski

 



Profile Extractor

Profile Tools

All profile tools are applied to the surface layers loaded in ArcMap. Surface layers supported by Profile Extractor are ESRI TIN,

Raster, PolygonZ TIN created by ET Surface. If the PolygonZ TIN is created by ET GeoWizards or third party, it should be

analyzed first using the Analyze TIN function of ET Surface. 

When a profile tool is used, the resulting profile(s) are displayed in the Profile Window.  If the Profile Window does not exist,

profiles are created for all visible surfaces in the Map view.  The user can add and remove surfaces from the Profile Window.  If

the Profile Window exists, when a tool is applied, profiles are created for all surfaces defined in the Profile Window.

Three tools are available to the user to input/identify the cross-section lines to be used for drawing a profile:

Draw Cross-Section line tool  - the user draws free hand polyline on the view. If the Profile Window is not open

already, the profile for this polyline is extracted from all visible surfaces  in the Map view and displayed in the Profile

Window.  If the Profile Window exists, profiles are extracted from the surfaces defined in the Profile Viewer.

Draw profile for feature . The tool allows the user to point to a feature from a feature layer in the Map and creates

profiles for this feature.  The tool is only active, if there is a feature layer selected in the Surface Layer box on the ET

Surface Toolbar.  The selected feature should be of Polyline or Polygon type.  With the profile window open, the user

can change the selection, the contents of the profile will be updated to display the data for the newly selected feature. 

If the selected feature layer has Z values, a profile will be created and displayed using the Z values from the feature in

addition to the surface profiles (with profile name of PolylineZ).  If the Profile Window is open and does not contain 

PolylineZ profile, when the user selects a feature with Z values, he can add the PolylineZ  profile by selecting Add

Surface from the File Menu and selecting PolylineZ from the selection list.

Draw profile for graphic . The tool allows the user to point to a graphic on the Map and creates profiles for this

graphic. The selected graphic element should of Polyline or Polygon type. When the tool is applied, the graphic is

selected and the profile is extracted and displayed in the Profile Window. With the profile window open, the user can

change the selection, move or reshape the graphic using the standard graphic tools and the contents of the profile will

be updated to display the data for the newly selected or edited graphic.

Notes:

In order to improve the performance of the tools, switch OFF the visibility of the surface layers for which you do not

want to extract profiles.

If any of the tools above is used when the Profile Window is closed several of the parameters are calculated based on

the length of the cross-section polyline and the difference between the Min and Max Z values and the settings of the

Profile Windows are adjusted accordingly.

Copyright © Ianko Tchoukanski



Profile Extractor

Profile Window

The Profile Window is the dialog where the profiles are displayed. The user can adjust various settings and once happy with the results, export the data or image of

the profile, draw the profile in the Data Frame or the Layout. 

Functionality in the Profile window is available through the Main Menu displayed on top of the dialog, the Main Toolbar (next to the Main Menu) and the Context Menu

for the Table of Contents  (right click on a layer name in the TOC).

Over the chart area the user can use the mouse wheel to zoom in by turning it forward or zoom out by turning it backward.  Pressing the mouse wheel (or middle

button) and moving the mouse will pan the profile accordingly.  Pressing the right mouse button will create a tooltip displaying the Station and Height at the mouse

location.  To remove the tooltip, press the right button again.

 Table of contents (TOC) - located on the left side shows the names of layers displayed in the Profile Window.  The layer at the top of the table is displayed

on top in the Profile Window.  From the TOC the user can control the following:

The order in which the layers are displayed by dragging and dropping the TOC items up and down the list

The visibility of each layer by clicking on the check box

Expand the layer by clicking on the plus/minus sign to show the layer symbol(s)

The style for drawing the layer by opening the Properties Window - either double click on a Layer name of right lick and select Properties from the

context menu

Show Data Points for a profile by right clicking on the Layer name and checking the "Show Data Points" status

Set the Identity layer by selecting the "Set Identify" from the context menu. There can be only one Identity layer in the Profile Window.  It is

displayed with a brown outline in the Table of contents.

Include or exclude the Profile in the list of layers for which labels will be created when using the Label tool (by checking the value in the context

menu).  The layers enabled for labels have a label icon on the right hand side in the Table of contents.

Remove the Layer from the Profile Window by right click and select "Remove layer" from the context menu

Main menu

File Menu - include the following items

Hide/Show Table of contents - hides or shows the Table of contents

Save Project - allows the user to save the current settings in a project file.  The drawing styles for all layers are saved as well as the

general profile settings.  If a project file is used its name is displayed in the title of the window. 

Save Project As - saves the current settings in a new project file which becomes the current project file

Open Project - opens a project file (.etprj). When the user selects the project file, its contents are checked against the current Map to

determine the existence of layers.  A status window is displayed showing the required layers and their availability in the Map.  If all the

layers in the project file are found in the Map and comply with the requirements, the file is loaded and applied to the current profile polyline.

Add Surface - allows the user to add another surface layer to the Profile Window.  All surface layers, which are not already present are

included in the selection list (including not visible layers)  If all surface layers in the Map are already present in the Profile Window, a

message is displayed to inform the user.

Add Layer - see Adding Layer options

Save profile in currently edited layer - see Export options

Save profile in a new feature class - see  Export options

Export profile as text file - see  Export options

Save as image - see  Export options

Settings Menu

Profile Settings - opens the Options window allowing the user to change general settings - Title, colours and fonts for display of the



background, grids, axis settings as well as settings for data display

Line of sight settings  - allows the user to change settings for Line of Sight display - only available with Line of Sight display

Sample Distance - allows the user to change the sample distance for profile generation

Data Menu

View Profile Data - displays X, Y and Z for each data point of a profile together with the station (distance from the start of the cross-section

polyline, along the polyline). If multiple profiles are drawn in the Profile Window, the data for all profiles can be displayed by selecting the

"All" option.  Since profiles of different types may have different data points, the data points are merged and sorted, and Z values for each

surface calculated for the resultant list of data points.

View Profile Statistics - displays several important characteristics of each profile:

3D Length

2D Length

Maximum Z value

Minimum Z value

Length Uphill

Length Downhill

Average Slope Uphill

Maximum Slope Uphill

Average Slope Downhill

Maximum Slope Downhill

Profile Menu

Add Label at Station - adds a label on the profiles at user specified station along the cross-section polyline

Delete All Labels - removes all labels displayed on the Profile Window

Profile Cross-sections Along Route - see Animate Profile

Draw Profile on View - see Draw on View

Draw Profile on Layout - see Draw on Layout

Tool Bar  - has several tools, many of which do not need explanations

Zoom In

Zoom Out

Pan

Zoom Full Extent

Fixed Zoom In

Fixed Zoom Out

Identify - displays for the user clicked location on the profile Z, Station and Slope for the Identity layer. A point  is drawn for the same location on the

cross-section line in the Data Frame (the View).  The Identity layer can be changed by right clicking on the layer name in the table of contents and

selecting "Set Identify".

Measure - allows measurement of horizontal or vertical distances in the Profile Window.  With the Measure tool selected press and hold the mouse

button and drag the mouse cursor across the window. The measured distance is displayed in the toolbar next to the Measure tool

Label - Draws a label with Z value for the profiles at user clicked point.

Delete Label - deletes the clicked label.

Z scale indicator - displays the current Z scale - the difference of the representation of the distances in length and height. Z Scale = 2 for example

will mean that 250 meters height will be equal to 500 meters length on the profile display. Initially the Z Scale is calculated automatically for best fit

in the Profile Window. The user can adjust the value of the Z Scale at any time - see Profile Settings

Copyright © Ianko Tchoukanski



Profile Extractor

Profile Settings

General settings for the Profile Window can be adjusted by the user from the Profile settings dialog (Settings Menu ==> Profile

Settings)

 On the General tab the user can set a title for the profile, its font and colour as well as styles and colours for the

background and the profile area.

The Axis Settings tab allows adjusting

the fonts and colours for the axis labels

the color, width, length and visibility of tick marks

the style, width and color of grid lines



Data Display options

Adjusting Z scale (the difference of the representation of the distances in length and height. Z Scale = 2 for

example will mean that 250 meters height will be equal to 500 meters length on the profile display).  

Automatic - the software will calculate Z Scale based on the profile data and the size of the Profile

Window.

User Assigned -  the user can set explicitly the Z Scale for drawing the profile. Note that this might

cause not the entire profile to be visible. The user might need to adjust the size of the Profile Window

or the zoom factor.

Profile Base (the lowest Z value to be displayed). Initially the Profile Base is calculated by the software based

on the profile data and the size of the Profile Window. The user can adjust the Profile Base explicitly. To

facilitate this the highest and lowest Z values of the current profile are indicated in the dialog. 

Sample Distance - the distance (in the units of the spatial reference of the data frame) along the cross-section

polyline data points are interpolated from the surface. The sample distance can be adjusted from the Data

Display tab of the Profile Settings or directly from Settings ==> Sample Distance. The Profile Settings Dialog

allows the user to indicate whether the Sample Distance will be used for profiles derived from TIN surfaces.

See the discussion about Sample Distance.

 

Copyright © Ianko Tchoukanski



Profile Extractor

Profile Properties

Property settings for each layer can be adjusted in the Property Windows (TOC Context Menu ==> Properties).  Depending on the layer type, there are

different Property Windows.  When the layer is a surface, the Profile Properties Window is displayed.  For layers - see Layer Properties

 Profile Properties - apply settings for a Surface layer

Line and Fill tab - allows for changes in the line style, color and width and the fill type, color(s), style and transparency.

Data points tab

Display Data Points - when not checked, no Data Points are displayed including Verticals and Labels.  When checked the options

below are used for the Data Points display.  This option can also be changed for a layer by right clicking on the Layer name in the

TOC and checking "Show Data Points".

Draw Data Points - the user can specify which significant data points will be drawn automatically on the profile and change their

symbol, size and colors.

Draw Verticals at Data Points - the user can specify at which significant data points a vertical lines will be drawn automatically on the

profile and change their line style, width and color.



Labels tab

Label Data Points - the user can specify which significant data points will be labelled on the profile, change the font, style, precision

and position of the Labels

 

Copyright © Ianko Tchoukanski



Profile Extractor

Add Layers to Profile

Feature layers loaded in the Map can be added to the Profile window and draped on a profile by selecting File Menu ==> Add Layer.  Depending on the type of layer

to be added, the following is displayed in the Profile Window:

If the selected layer is of Polygon type, an intersection of the Profile polyline with the Polygon layer is derived and draped on the related surface. The

intersection results in line(s) and they are displayed on top of the related surface.

If the selected layer is of Polyline type, an intersection of the Profile line with the Polyline layer is derived resulting in points - all the intersections of the Profile

polyline with polylines from the selected layer.  These points are displayed on top of the related surface.

If the selected layer is of Point type, the user has to specify a buffer distance.  All points within this distance from the Profile polyline are selected and draped

on the related surface.  Points can be represented on the Profile window as Point graph, Line graph or Bar graph - see detail further down this page. 

Selecting File Menu ==> Add Layer open the Select Layer dialog.

If the selected layer is of type Polyline or Polygon, the user has to specify the related Surface on which the layer will be draped and a label field, the values from which

will be used for labeling the features.

A sample display for a Polygon layer.  To change the display, right click on the layer in the TOC and select "Properties" - see Layer Properties.



A sample display for a Polyline layer.   To change the display, right click on the layer in the TOC and select "Properties" - see Layer Properties.

If the selected layer is of type Point the user has to define additionally the Buffer distance which will be used for the point selection.



By selecting "Finish" at this stage, all points within the buffer area of the Profile Polyline will be selected and displayed with their surface value in the Profile window.

By selecting "Next" the user can set additional properties for the display

The Graph type can be Point, Line or Bar.  In order to display Line or Bar graphs, additional values derived from fields need to be specified.

The field values can represent Elevation, Depth or Thickness and the calculation of the resulting heights are based on this selection.  Elevation values are derived

directly from the field.  Depth values are subtracted from the Surface value at the point to calculate the elevation.  Thickness values are used to sequentially subtract

the thickness from the previous elevation value.

If the field values represent Elevation or Depth, the user can specify that the graph is stacked - meaning all height values are calculated and sorted and drawn

sequentially from top to bottom.  If the "Stacked graph" option is not checked, each line or bar starts from the Surface value to the calculated elevation.

By selecting "Next" the user goes to the next step - selection of fields.

Select and add all field from which values for the graph will be derived.  The Label column can be edited to change the label, which will be displayed.  The table rows

can be moved up and down to change the sequence of calculating elevations.  Please note that in some cases the sequence does not have an influence on the

display - for example if the selected Graph type is Point or if the Stacked option is selected. 

Sample display for Point layer.  To change the display, right click on the layer in the TOC and select "Properties" - see Layer Properties.



Copyright © Ianko Tchoukanski



Profile Extractor

Layer Properties

Changing the display options for a layer can be done from the layer Properties window (right click on the Layer in the TOC and

select "Properties" from the context menu.  Click "Apply" to apply the changed settings.  Clicking "Close" only closes the

Properties window. 

Depending on the type of layer, different Properties window will be displayed.

Polygon layer - displayed when the selected layer is of Polygon type and so the representation in the Profile Window is

lines draped on the Profile line.  The user can adjust the following:

The related surface on which the layer will be draped.

The display of the derived lines by changing their line style and width

Line Color From option.  When "From layer" is specified, the line color of the draped polygons is taken from

the Layer polygon symbols on the Map (polygon fill color).  This honours Category (only by single field) or

Quantity classification that has been applied.  When "User defined" is selected, only one color is applied to all

lines and is selected by the user in the Properties form.

Labels - the user can specify whether labels are displayed, their location along the line (left, centre or right),

their font, color, style, background and position.

Polyline layer - displayed when the selected layer is of Polyline type and so the representation in the Profile Window is

points draped on the Profile line. The use can adjust:

The related surface on which the layer will be draped.

Point Settings - the user can change the type, size and line color of the draped point.  The "Fill Color" has two

options.  When "From layer" is specified, the fill color of the symbols is taken from the Layer line symbols on

the Map (line color).  This honours Category (only by single field) or Quantity classification that has been

applied.  When "User defined" is selected, only one color is applied to all symbols and is selected by the user

in the Properties form.

Labels - the user can specify whether labels are displayed, their location along the line (left, centre or right),

their font, color, style and position.



Point layer - displayed when the selected layer is of Point type and so the representation in the Profile Window can be

Points, Line graph or Bar graph. The use can adjust:

The related surface on which the layer will be draped.  Please note that for Line and Bar graphs, the Surface

Value at the point is always taken into account.  Non stacked graphs are displayed from the surface elevation

to the calculated field elevation and stacked graphs include the surface elevation in the sorted elevation list.

For Point graphs the surface elevation can be included or excluded by the user.

The buffer distance for selection of points

The Stacked option for the Line or Bar chart.  The Stacked option has no meaning when the graph is based

on Thickness values.

The graph type - Point, Line or Bar.  Please note that when the Surface Value is included in the list for Point

graph, it will not exist in the list when the type is changed to Line or Bar graph.  Still the Surface Value is

included in the graph display as described above.

The size, color, symbol and label for each graph category. Graph categories can be moved up and down in

the table by drag and drop - the topmost category is displayed on top of the lower categories.

Graph categories can be moved up and down in the table by drag and drop - the topmost category is

displayed on top of the lower categories. By specifying a size of 0, the category will not be displayed.

The display of labels with adjustment of their font, color, background and location.

The label for each graph can be taken from the Name field or from the Category Label



Copyright © Ianko Tchoukanski



Profile Extractor

Draw Profile on View



The profile currently displayed in the Profile Window can be drawn on the Data Frame (the View). This function can be accessed from Profile Menu ==> Draw Profile

on View. A dialog will be presented to the user to adjust the drawing options. The user can change the Profile Base and the  Z Scale. Depending on the cross-section

polyline the user can select the side of the polyline on which the profile will be drawn.

Only s single surface profile can be drawn on the view. The user needs to select which surface layer is to be used.

The Preview button draws the profile elements as temporary graphics. If the user selects Cancel the graphics will be deleted. If the user clicks OK the graphics will be

grouped in a single group. 

The graphics can also be saved in a new feature class by selecting the "Save as Feature Class" button.  This will open another dialog, in which the user can specify

which elements should be saved and provide a name for the new Feature Class.

NOTE:  Line styles are only valid if the line width is 1.  For line width bigger than 1 a solid line will be drawn. 

Copyright © Ianko Tchoukanski



Profile Extractor

Draw Profile on Layout

The profile currently displayed in the Profile Window can be drawn on the layout. This function can be accessed from Profile

Menu ==> Draw Profile on Layout. A dialog will be presented to the user:

Current scale of the data frame will be indicated in the dialog

The user can change the scale for drawing the profile or draw the profile with the scale of the data frame

The current Z Scale will be shown and can be adjusted.

The Preview button draws the profile elements on the layout as temporary graphics. If the user selects Cancel the graphics will

be deleted. If the user clicks OK the graphics will be grouped in a single group. Then the user can move it to a position of

choice. 

The profile will be drawn to the user defined scale.

All the symbology from the Profile Window will be preserved in the profile drawn on the layout with the following

exceptions:

Profile transparency is not supported

Point types x, y and z are not supported - these will be drawn as circles



Line types are only supported, when the line width is 1, if the line type is not Solid and line width is more than

1, the lines will be drawn as solid lines

Copyright © Ianko Tchoukanski



Profile Extractor

Draw profile for cross-section lines moving along a route.



Use the Draw Cross-Section line tool , Draw profile for feature  tool or Draw profile for graphic  tool to define the route along which the

cross-section line will move. The profile for the route will be drawn in the Profile Window

Adjust the order of the surfaces and the symbology of the profiles.

Click on Profile Menu == > Profile Cross-sections Along Route - a small dialog will be displayed.

On the dialog the total length of the route will be indicated. 

Specify the desired length of the cross-section line that will move along the route and will be perpendicular

to the route.

Specify the step with which the cross-section line will move along the route.

On clicking OK a new toolbar  will be displayed at the top of the Profile Window next to the main toolbar, the first

cross-section line will be generated and the profile will be extracted for it.

Using the command buttons navigate the cross-section line

On clicking the Stop button will close the animation mode and the profile of the route will be drawn in the Profile Window.

During the animation it is possible that the extent of the Profile view will change and go outside of the extent of the window.  The Recalculate Extent button

 can be used to recalculate the extent of the current Profile view and zoom to it.

See the Profile Extractor online tutorial for a video about this functionality.

Copyright © Ianko Tchoukanski

http://www.et-st.com/ET_Surface/Videos/pe_videos.html


Profile Extractor

Draw profile for cross-section lines moving along a route.

Several options are available for exporting the profile data:

Save data in the currently edited layer. The layer can be PointZ or PolylineZ feature layer

The data for a single surface can be exported

only 

The user needs to select a surface for which 

the data will be exported.

If the currently edited layer is of PointZ type and

has a field called ET_Station, the stations of the

data points along the profile will be stored in

this field.

Export the data of the current profile to a new feature class.

The data can be exported to a new PointZ or

PolylineZ feature class. 

The data for a single surface can be exported only

The user needs to select a surface for which the 

data will be exported.

If the output is set to PointZ type a new field called 

ET_Station will be created, the stations of the data

points along the profile will be stored in this field.

 



Export profile data as a text file

The user needs to select a surface for which the data will be exported. If the user selects "All", then the data for all surfaces in

the Profile Window will be exported. Since profiles of different types may have different data points, the data points are

merged and sorted, and Z values for each surface calculated for the resultant list of data points.

The data will be exported in a comma delimited text file and will have the following structure

X,Y,Station,Surface1,Surface2,Surface3.......

where Surface1 will have the Z values for the point extracted from Surface1

Export Profile Statistics

The statistics of the profile for the specified

surface will be saved to a text file.



Save As Image - an image of the current profile will be saved to a disk.  Supported export formats are Bitmap(.bmp),

Gif(.gif), Jpeg(.jpg), Png(.png) and Tiff(.tif).

Copyright © Ianko Tchoukanski



Profile Extractor

Sample Distance - Discussion

Profile Extractor can use various type of surfaces - ESRI TIN, Raster or PolygonZ TIN to generate surface profiles for the user defined

cross-section line. In general ESRI TIN and PolygonZ TIN are different in the way they store the data, but their behavior is the same so

we will refer to both surfaces in this topic simply as TIN.

A profile represents the Z values of a surface along a cross-section polyline using points on the polyline for which the Z will be

interpolated from the surface. There are 2 groups of points:

Vertices of the cross-section polyline - the Z values of the vertices are always interpolated

Additional data points between the vertices - these are defined by user using the sample distance assigned.

Sample Distance is a regular interval (in the units of the spatial reference of the data frame) at which data points are interpolated from the

surface.

When extracting profiles from a Raster surface we need to specify sample distance in order to define the number of data points to be

interpolated. The default sample distance used by the Profile Extractor is equal to the cell size of the raster. If more than one raster

datasets are used, one of them will be honored in calculation the sample distance.

When extracting profiles from TIN surfaces, the sample distance is not important. Each triangle of a TIN is a plain and needs only 2 data

points (the intersection of the cross-section polyline with the edges of the triangle) to be sufficiently represented in a profile.

With Profile Extractor, the user can use sample distance to extract profiles from TIN surfaces. This however in many cases will lead to

losing some significant data points in the profile.

The image above shows 2 profiles extracted from a TIN surface for the same cross-section line. The profile in red is extracted without

using sample distance. The data points are extracted for the significant points of the TIN (intersections with the edges of triangles). The

profile in blue is extracted using sample distance. One can see that some significant points (peaks and valleys) are missing from the blue

profile.

When do we need to use sample distance for profiles extracted from a TIN surface.

If we want to compare profiles derived from different surfaces. In such a case the data points for the profile from each surface

need to be the same.

If we want the data points to be equally spaced along the cross-section polyline.

Copyright © Ianko Tchoukanski



Line of Sight (LOS)

LOS Discussion

Line of Sight is a direct imaginary line between two points (for example a line from the center of the eye to the center of the object viewed) uninterrupted by physical

matter other than the atmosphere. 

So the problem of defining LOS between 2 points can be stated simply:

If the line between the Observer and the Target intersects the surface (buildings and other opaque objects included in the term surface here) the Target is non visible

from the Observer. This can be illustrated with the following image:

The green parts of the surface will be visible and the red ones non-visible from the Observer.

Earth Curvature

There are however several other factors to consider. The above image will be correct if the Earth is flat and there is no atmosphere. We know however that the Earth

is not flat and have to take into account the curvature in our calculations. 

Lets assume an Observer (O) located at sea level that is looking towards a Target (AT) located also at sea level. For the

calculations we will assume that the Earth is a sphere. Lets get the radius (R) of the Earth at the Observer and Target points. The

radius at the Target will intersect the tangent at the Observer in point T.  Lets indicate the sink of the Target  due to the curvature

of the Earth with S. Using Pythagorean Theorem we can easily obtain the value of the sink

(R+S)
2
= R

2
+D

2

R
2
 + 2RS + S

2
 = R

2 + 
D

2

This can be solved for S as a quadratic equation:

S
2
 + 2RS - D2 = 0 (We know R and D)

but to simplify the formula, we'll take a different approach

S(2R+S) = D
2

S = D
2
/(2R+S)

Since the radius of the earth R = 6,370,000 meters is significantly (hundreds times) larger than the sink (S) we can accept that

2R+S = 2R (this will give 1 millimeter difference compared to the exact results if calculated for D = 50,000).

Therefore our formula for the sink becomes: S = D
2
/2R

From the table on the left we can see that the sink of the target significantly increases with the increase of the distance to the

target. Since some obstacles that are between the observer and the target will sink less than the target itself, in many cases we'll

have a target that to become invisible

Distance

(Meters)
Sink (Meters)

1,000 0.08

5,000 1.96

10,000 7.85

30,000 70.65

50,000 196.23



The image above illustrates how the target sinks (compared with the profile of the surface) with the increase of the distance to the Observer.

Taking into account the refraction of the light

As a general atmospheric condition the density of the air decreases as height

increases. As a result of this the light tends to bend as it travels long distances

through air. This causes distant objects near the horizon to appear higher than

they actually are. This negates to some extent the sinking caused by the

curvature of the Earth. The refraction coefficient might differ for different

atmospheric conditions coefficient of 0.13 can be used for achieving reliable

results: R = KD
2
/2R

K is the refraction coefficient

.

Line of sight for radio propagation.

There are many factors influencing the trajectory of the radio waves - atmospheric pressure, temperature, etc.,

but in general it tends to bend toward the Earth and returns to the surface behind the horizon. In practice an

Effective Earth Radius Ra = KR is used to take into account the refraction of the radio waves.

For typical atmospheric conditions the correction factor (K) is 4/3. 

In other words the distance from the transmitting antenna to where the ray returns to the surface is equivalent to

the optical horizon, had the Earth's radius been 4/3 of its actual value. 

Copyright © Ianko Tchoukanski



Line of Sight (LOS)

LOS Tools

The Draw Visibility Line tool  allows the user to draw a line defining the Observer location and the Target location.  Then it calculates the line of sight between

the Observer and Target from the surface selected in the Surface Layer box   

With the tool the user drags a line on the View. The start point of the line defines the position of the Observer. The visibility is calculated for the data points along the

line.  The results are displayed:

On the View - a group graphic with color coded visible and invisible portions of the line

In the Profile Window - the line of sight is drawn together with the profile of the surface which gives the user better understanding of the results. The user

has option to display also the Break Lines - LOS for which the visibility changes

The Draw Visibility Observer tool  allows the user to move the Observer location by clicking on the Map.

The Draw Visibility Target tool  allows the user to move the Target location by clicking on the Map.

Whenever the Observer or Target locations are changed a new Line of sight is calculated and displayed.

LOS Settings

The settings for the Line of Sight can be adjusted from the  Line of Sight Settings dialog (Settings Menu ==> Line of Sight Settings).

On the Line of sight settings tab the user can change the following

parameters: 

Observer offset above the surface

Target offset above the surface

Apply corrections for

Earth curvature

Refraction of light

Radio waves refraction



Change the values for Refraction correction and Earth radius

correction for radio waves

See LOS Discussion

On the Display settings tab the user can change the following

parameters: 

Adjust the colors for the visible and non-visible portions of LOS

Change the Line style and width of LOS lines

Draw the lines for which the visibility changes (Break Lines)

Rotation angle for rotating the Observer

Whether or not the previous LOS graphic to be deleted when a

new LOS is calculated and drawn on the View.

 EXAMPLE:

Observer and Target offset applied

See examples for applying Earth Curvature, Light and Radio Waves refractions here

Copyright © Ianko Tchoukanski



Line of Sight (LOS)

Line of Sight - Rotate Observer

Once a single Line LOS is calculated, the user can use the Rotation toolbar  to rotate the line of sight around the Observer. The

step of rotation (in Degrees) can be adjusted on the Line of Sight Settings Dialog. There the user can also set  whether the previous LOS graphic will be deleted when

a new one is drawn. 

During rotation it is possible that the extent of the Line of Sight view will change and go outside of the extent of the window.  The Recalculate Extent button  can

be used to recalculate the extent of the current Line of Sight and zoom to it.

The example below shows the result of the rotation of the Observer full 360 degrees. The green areas are visible and the red ones are non-visible from the Observer

 See the Profile Extractor online tutorial for a video about this functionality.

Copyright © Ianko Tchoukanski

http://www.et-st.com/ET_Surface/Videos/pe_videos.html


Digitize Z Shapes

Digitize Z Shapes Tools

The Digitize PointZ  , PolylineZ  and PolygonZ  tools extract for each geometry digitized the Z values from the

surface selected in the Surface Layer box   and create Z shapes.

If the user digitizes polylines or polygons new vertices are introduced in the digitized geometry depending on the source surface:

If the source surface is Raster, the user can change the sample distance to control the number of vertices introduced

in the digitized shape. To change the sample distance press the "S" key when the tool is active.

If the source surface is a TIN, new points are inserted at the intersections of the digitized geometry with the edges of

the TIN triangles.

The tools can be used to digitize features or graphics

IN an Editing Session: If the target layer is set to a Z enabled layer of the type the user digitizes, the geometry

captured will be stored as a feature in the target layer otherwise it will be stored as a graphic element. If for example

the target layer set in the Editor is of PointZ type and the tool used is Digitize PointZ, the geometry will be stored as a

feature. If however the tool used is Digitize PolylineZ, the geometry will be stored as a graphic element

OUT of an Editing Session: the geometries digitized are stored as graphic elements. The default symbols (set in

Drawing ==> Default Symbol Properties) are used for the graphic elements.

Copyright © Ianko Tchoukanski



Manage Graphics

The tools of ET Surface draw many graphics elements on the view. This tool allows to manage these graphics elements with

ease.  

Upon executing the command all graphics elements in the view are collected. The unique

names are populated in a combo box and the user can select a name from the list or type

one. If the Graphic Name box is left empty, all graphics will be considered in the selection

criteria.

The types of available graphics are populated in the graphic type combo box

There are three selection options

New Selection

Add To Selection

Remove From Selection

The user has options to quickly delete or group selected graphics.

Copyright © Ianko Tchoukanski



Build TIN

ToolBox Implementation .NET Implementation

Builds a Triangulated Irregular Network from a feature layer

Inputs:

A  feature layer  (Point, Polyline, Polygon)

Type of output - ESRI TIN or PolygonZ TIN

An elevation field - numeric field that will be used.  If the features have Z values, they can be used for elevation.

If the output is ESRI TIN - triangulation method to be used - "Mass points" or "Hard breaklines"

If the output is PolygonZ TIN - the Azimuth and the Altitude of the light source

Outputs:

New ESRI TIN or PolygonZ feature class. All the polygons are triangles that comply with the Delaunay criteria. See

TIN notes for more information about Triangulated Irregular Network.

If the output is ESRI TIN and the input features are polylines or polygons, they can be triangulated as Hard breaklines.

If the output is PolygonZ TIN, several characteristics are calculated and added in the attribute table for each triangle.

ET_ElMin - minimum elevation values for each triangle

ET_ElMax - maximum elevation values for each triangle

ET_ElMean - mean elevation values for each triangle

ET_Slope_D - the slope (maximum rate of elevation change) of each triangle in Degrees (from 0 to 90)

ET_Slope_P - the slope (maximum rate of elevation change) of each triangle in percents (from 0 to 100%)

ET_Aspect - the aspect - compass direction of the slope (horizontal direction in which a slope faces) - 0 is

North, 90 degrees - East, 180 degrees - South, 270 - West  of each triangle

ET_ACode - aspect categories

N - North ( 0 to 22.5 and 337.5 to 360)

NE - North East (22,5 to 67.5)

E - East (67.5 to 112.5)

SE - South East (112.5 to 157.5)

S - South (67.5 to 112.5)

SW - South West (202.5 to 247.5)

W - West (247.5 to 292.5)

NW - North West (292.5 to 337.5)

U - Undefined - Slope = 0

ET_AreaZ - the 3D area of each triangle

Notes :

The process goes through several steps

Collecting the elevation points from the source layer. If the source is a polygon or polyline layer, all the

vertices are used.

Removing  duplicate points

Creating the TIN structure

Analyzing and storing the TIN

In version 4.0 the TIN creation has been redesigned and can handle much bigger datasets with improved speed.  On

32 bit operating systems (Windows XP 32 bit or Windows 7 32 bit) with 4 GB of RAM the function should work with no

problems on datasets with up to 6 million points. On 64 bit systems bigger datasets can be processed depending on

the available memory

Example:

Source Layer (polyline) Result TIN



ToolBox implementation

Command line syntax - two different toolbox tools available depending on the type of the input TIN. Check the colour coding for

specifics.

ETS_GPBuildESRITIN <Input Dataset>  <Out TIN>  <Elevation Field> <Triangulation type>

ETS_GPBuildPolygonZTIN <Input Dataset>  <Out Feature Class>  <Elevation Field> {Light Azimuth} {Light Altitude}

Parameters

Expression Explanation

<Input Dataset> A Point, Polyline or Polygon feature layer or feature class

<Out TIN> A String - the full name of the output ESRI TIN

<Out Feature Class> A String - the full name of the output feature class.

<Elevation Field> A String representing the name of the field to be used as a source for the elevations

<Triangulation type> A String - possible values are "Mass points" and "Hard breaklines"

{Light Azimuth}
A Double representing azimuth of the light source (0 to 360). 0 indicates North, 90 -

East, 180 - South, 270 - West

{Light Altitude} A Double representing the altitude of the light source  in degrees (0 to 90)

Scripting syntax

ETS_GPBuildESRITIN (Input Dataset, Out TIN, Elevation Field, Triangulation type)

ETS_GPBuildPolygonZTIN(Input Dataset, Out Feature Class, Elevation Field, Light Azimuth, Light Altitude)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

BuildEsriTin(inFeatureClass As IFeatureClass, sOutTinName As String, elevationField As String, triangulationType As String)

As ITin

BuildPolygonZTin(inFeatureClass As IFeatureClass, sOutFName As String, elevationField As String, Optional dAzimuth As

Double = 315, Optional dAltitude As Double = 45) As IFeatureClass

Copyright © Ianko Tchoukanski



Contour To Raster

ToolBox Implementation .NET Implementation

Interpolates a raster surface from contour polylines. 

Inputs:

A polyline feature layer representing contours. It is strongly recommended to clean all possible gaps in the contours

before using the Contour To Raster function. If your contour dataset has gaps use the Clean Contour Gaps function.

Output raster name and format

Cell Size of the output raster

Elevation field -  a field from the attribute table to be used as a source for the values of the raster. The Z values of the

input PolylineZ dataset can be also used as source for the raster values.

Output:

A floating point raster.

Example:

Notes:

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

The feature class must be in a projected coordinate system.

The algorithm is specifically designed to use contours as input. If a polyline dataset that represents a different feature

is used the results might be unexpected.

ToolBox implementation

Command line syntax

ETS_GPContourToRaster <Input Dataset>  <Out Raster> <Elevation Field> < Cell Size>

Parameters

Expression Explanation

<Input Dataset> A  Polyline layer or feature class

<Out Raster> A String - the full name of the output raster (A raster with the same full name should not

exist). The output raster type depends on the extension of the output file(see Notes

above)



<Elevation  Field> A String representing the name of the field which values are going to be used for

interpolation.

<Cell Size> A Double representing the cell size of the output raster.

Scripting syntax

ETS_GPContourToRaster (Input Dataset, Out Raster, Elevation Field, Cell Size)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

ContoursToRaster (inFeatureClass As IFeatureClass, sOutRaster As String, sElevationField As String, dCellSize As Double)

As IRasterDataset2 

Copyright © Ianko Tchoukanski



Inverse Distance Weighted (IDW) Interpolation

ToolBox Implementation .NET Implementation

Uses Inverse Distance Weighted Interpolation (IDW) to interpolate a raster from the input features.

Inputs:

A Point or Polyline feature layer or feature class.

Output raster name and format

Cell Size of the output raster

Value field -  a field from the attribute table to be used as a source for the values of the raster. If the input is of PointZ

or PolylineZ type, the Z values of the features can be used as source for the raster values

Power - A positive number that defines the weight of the distance in the interpolation process. The weight of each

known point decreases as the distance from it to the interpolated cell increases. The higher the value of the Power,

the faster the weight of the known point decreases. If the Power is less than 1 the appearance of the resulting surface

will be sharper. If the value of the Power is greater than 1 the appearance of the surface will be smoother. Very large

values of the Power will result of a surface with only few known points influencing the value of the interpolated cell.

The most commonly used value is 2 (default)

Number of sources - the number of known points to be used in the interpolation of the value of each cell. The default

value is 12.

Cut off distance (optional) - a known point will not influence the interpolation of cells that are farther than this distance

from the point. 

Output:

A floating point raster.

Examples:

Power = 0.5

Power = 2

Power = 15



Notes:

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

The feature class must be in a projected coordinate system

ToolBox implementation

Command line syntax

ETS_GPIDW <Input Dataset>  <Out Raster> <Elevation Field> < Cell Size> <Power>   <Number of Sources> {Cutoff Distance}

Parameters

Expression Explanation

<Input Dataset> A Point, Polyline or Polygon layer or feature class

<Out Raster> A String - the full name of the output raster (A raster with the same full name should not

exist). The output raster type depends on the extension of the output file(see Notes

above)

<Elevation  Field> A String representing the name of the field which values are going to be used for

interpolation.

<Cell Size> A Double representing the cell size of the output raster.

 <Power> A Number - see main description above

 <Number of Sources> A Number - see description above

 {Cutoff Distance} A Double representing the Cutoff distance.

Scripting syntax

ETS_GPIDW (Input Dataset, Out Raster, Elevation Field, Cell Size, Power, Number of Sources ,Cutoff Distance)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

IDW (inFeatureClass As IFeatureClass, sOutRaster As String, sElevationField As String, dCellSize As Double, dPower As

Double, iNumPoints As Integer, Optional dCutoff As Double = 0) As IRasterDataset2

Copyright © Ianko Tchoukanski



Kernel Density

ToolBox Implementation .NET Implementation

Uses Kernel Density Estimation to interpolate a surface from the input Point or Polyline features. The function fits a

symmetrical surface over each  input point using Gaussian kernel.

The surface has maximum value in the input point, decreases as

the distance from the input point increases and has 0 values at 

distance equal to the search radius.

The volume of the created surface is equal to the value of the

input point.

The density of each cell of the output raster is calculated by

adding the values of all individual surfaces for that cell.

The search radius does not influence the volume of the surface, but has a major impact on the generalization of the data. The

larger the search tolerance, the smoother and more generalized surface will be interpolated. As you can see from the image

below the selection of the search radius is very important and influences greatly the surface. You should evaluate your data

and have always in mind what is the goal of the task when deciding on what search tolerance to use.

 

Inputs:

A Point or Polyline feature layer or feature class.

Output raster name and format

Cell Size of the output raster

Search radius.

Value field -  a field from the attribute table to be used as value for each point. The value might be the population at

this point, the number of incidents at the location etc. If you do not have such a field in the attribute table, just create a

new field and calculate the values of all records equal to 1.

Area Units - The value of each cell of the output raster will actually have value measured in Value per square unit. The

default unit is the unit of the spatial reference of the input dataset, but you might want to change this to a different area

unit (for example incidents per square kilometer)

Output:

A floating point raster.



Example - the surface created from the 6 points in the profile above:

Search Radius = 2000 meters - 

smoother more generalized

appearance

Search Radius = 1000 meters - more 

pronounced influence of the individual

points

Both surfaces superimposed - two very

different surfaces. The volume of both

however is the same and is equal to 

the sum of the values of the input

points.

Notes:

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

The input feature class must be in a projected coordinate system

ToolBox implementation

Command line syntax

ETS_GPDensity <Input Dataset>  <Out Raster> <Elevation Field> < Cell Size> <Interpolate Radius>   <Area Units>

Parameters

Expression Explanation

<Input Dataset> A Point, Polyline or Polygon layer or feature class



<Out Raster> A String - the full name of the output raster (A raster with the same full name should not

exist). The output raster type depends on the extension of the output file(see Notes

above)

<Value  Field> A String representing the name of the field which values are going to be used for

interpolation.

<Cell Size> A Double representing the cell size of the output raster.

<Interpolate Radius> A Number - see main description above

<Area Units> A String - possible values are "SquareMeters", "SquareKilometers", "Hectares",

"SquareFeet", "SquareMiles", "Acres", "SquareYards", "Decares", "Ares".

Scripting syntax

ETS_GPDensity (Input Dataset, Out Raster, Value Field, Cell Size, Interpolate Radius, Area Units)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

Density (inFeatureClass As IFeatureClass, sOutRaster As String, sElevationField As String, dCellSize As Double, dRadius As

Double, Optional areaUnits As String = "") As IRasterDataset2

Copyright © Ianko Tchoukanski



Modify TIN

ToolBox Implementation .NET Implementation

Modifies an ESRI TIN or PolygonZ TIN by adding additional data points or breaklines from a feature layer.  The output TIN is

of the same type as the input TIN.

Inputs:

An ESRI TIN or PolygonZ TIN to be modified.

A feature layer  (Point, Polyline, Polygon)

An elevation field - numeric field that will be used.  If the features have Z values, they can be used for elevation.

If the output is ESRI TIN - triangulation method to be used - "Mass points",  "Hard breaklines" or "Soft breaklines"

If the output is PolygonZ TIN - the Azimuth and the Altitude of the light source

Outputs:

New ESRI TIN or PolygonZ feature class. 

Notes :

If the input is ESRI TIN, the modify features can be added as Mass points, Hard breaklines or Soft breaklines.  The

elevation values for Hard breaklines are defined by a field or by the Z values of the features.  For Soft breaklines the

elevation values are calculated from the input TIN.

If the input is PolygonZ TIN, the modify data can only be added as Mass points.

ToolBox implementation

Command line syntax - two different toolbox tools available depending on the type of the input TIN. Check the colour coding for

specifics.

ETS_GPModifyESRITIN <Input ESRI TIN>  <Modify Dataset> <Output ESRI TIN> <Triangulation type> <Elevation Field>

ETS_GPModifyPolygonZTIN <Input PolygonZ TIN> <Modify Dataset> <Output PolygonZ TIN>  <Elevation Field> {Light

Azimuth} {Light Altitude} 

Parameters

Expression Explanation

<Input ESRI TIN> An ESRI TIN layer or dataset

<Input PolygonZ TIN> A PolygonZ TIN (feature class)

<Modify Feature Class> A  Point, Polyline or Polygon feature layer or feature class

<Output ESRI TIN> A String - the full name of the output ESRI TIN

<Output PolygonZ TIN> A String - the full name of the output PolygonZ TIN (feature class).

<Elevation Field> A String representing the name of the field to be used as a source for the elevations

<Triangulation type> A String - possible values are "Mass points",  "Hard breaklines" and "Soft breaklines"

{Light Azimuth}
A Double representing azimuth of the light source (0 to 360). 0 indicates North, 90 -

East, 180 - South, 270 - West - default is 315

{Light Altitude} A Double representing the altitude of the light source  in degrees (0 to 90) - default is 45

Scripting syntax



ETS_GPModifyESRITIN (Input TIN, Modify Dataset, Output ESRI TIN, Triangulation type, Elevation Field)

ETS_GPModifyPolygonZTIN(Input PolygonZ TIN, Modify Dataset, Output PolygonZ TIN, Elevation Field, Light Azimuth, Light

Altitude)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

ModifyEsriTin (inTIN As ITin, inFeatureClass As IFeatureClass, sOutTinName As String, triangulationType As String,

elevationField As String) As ITin 

ModifyPolygonZTin (tinFeatureClass As IFeatureClass, modifyFeatureClass As IFeatureClass, sOutFName As String,

elevationField As String, Optional dAzimuth As Double = 315, Optional dAltitude As Double = 45) As IFeatureClass

Copyright © Ianko Tchoukanski



ESRI TIN to PolygonZ TIN

ToolBox Implementation .NET Implementation

Converts an ESRI TIN to a PolygonZ TIN feature class. Calculates several 3D characteristics for each triangle and stores them

in the attribute table

Inputs:

An ESRI TIN

Options for calculating Z characteristics of the triangles

Outputs:

New polygon Z feature class. 

The PolygonZ TIN will be analyzed and several characteristics will be added in the attribute table for each triangle.

ET_ElMin - minimum elevation values for each triangle

ET_ElMax - maximum elevation values for each triangle

ET_ElMean - mean elevation values for each triangle

ET_Slope_D - the slope (maximum rate of elevation change) of each triangle in Degrees (from 0 to 90)

ET_Sope_P - the slope (maximum rate of elevation change) of each triangle in percent (from 0 to 100%)

ET_Aspect - the aspect - compass direction of the slope (horizontal direction in which a slope faces) - 0 is

North, 90 degrees - East, 180 degrees - South, 270 - West  of each triangle

ET_ACode - aspect categories

N - North ( 0 to 22.5 and 337.5 to 360)

NE - North East (22,5 to 67.5)

E - East (67.5 to 112.5)

SE - South East (112.5 to 157.5)

S - South (67.5 to 112.5)

SW - South West (202.5 to 247.5)

W - West (247.5 to 292.5)

NW - North West (292.5 to 337.5)

U - Undefined - Slope = 0

ET_AreaZ - the 3D area of each triangle

ET_Hill - the brightness of each triangle based on a light source location

ToolBox implementation

Command line syntax

ETS_GPEsriTINToPolygonZ <Input TIN>  <Out Feature Class>  {Light Azimuth} {Light Altitude}

Parameters

Expression Explanation

<Input TIN> An ESRI TIN layer or dataset

<Out Feature Class> A String - the full name of the output feature class.

{Light Azimuth}
A Double representing azimuth of the light source (0 to 360). 0 indicates North, 90 -

East, 180 - South, 270 - West

{Light Altitude} A Double representing the altitude of the light source  in degrees (0 to 90)

Scripting syntax

ETS_GPEsriTINToPolygonZ (Input TIN, Out Feature Class, Light Azimuth, Light Altitude)



See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

ESRITin2PolygonZTin(inTin As ITin, sOutFeature As String, Optional dAzimuth As Double = 315, Optional dAltitude As Double

= 45) As IFeatureClass

Copyright © Ianko Tchoukanski



TIN to Edges

ToolBox Implementation .NET Implementation

Exports the edges of an ESRI TIN or a PolygonZ TIN to a new polyline feature class. Calculates several 3D characteristics for

each edge and stores them in the attribute table. 

Inputs:

An ESRI TIN or PolygonZ TIN

If the input is an ESRI TIN the user can export specific type of edges only (Regular, Soft, Hard) or all edges.

Outputs:

New Polyline or PolylineZ feature class. 

Several characteristics will be calculated for each edge and stored in the following fields.

ET_Slope_D  - the slope  of the edge in Degrees (from 0 to 90)

ET_Azimuth - the Azimuth of the edge in Degrees "North Azimuth" orientation - 0 = North, clockwise.

ET_2DLen - 2D length of the edge

ET_3DLen - 3D length of the edge

ET_Type - the type of the edge. All edges of a PolygonZ TIN will have value "Regular"

ToolBox implementation

Command line syntax - two different toolbox tools available depending on the type of the input TIN. Check the colour coding for

specifics.

ETS_GPEdgesEsriTIN <Input ESRI TIN>  <Out Feature Class>  {3D Features} <Edge Type>

ETS_GPEdgesPolygonZTIN <Input PolygonZ TIN>  <Out Feature Class>  {3D Features}

Parameters

Expression Explanation

<Input ESRI TIN> An ESRI TIN layer or dataset

<Input PolygonZ TIN> A PolygonZ TIN (feature class)

<Out Feature Class> A String - the full name of the output feature class.

{3D Features} A Boolean indicating whether the result will be PolylineZ or Polyline

<Edge Type>
A string indicating the type of the edges to be exported. Valid values "All", "Hard",

"Regular", "Soft"

Scripting syntax

ETS_GPEdgesEsriTIN (Input ESRI TIN, Out Feature Class, 3D Features, Edge Type)

ETS_GPEdgesPolygonZTIN (Input PolygonZ TIN, Out Feature Class, 3D Features)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

EdgesESRITin (inTin As ITin, sOutFeature As String, bZ As Boolean, sOption As String) As IFeatureClass



EdgesPolygonZTin (inFeatureClass As IFeatureClass, sOutFeature As String, bZ As Boolean) As IFeatureClass

Copyright © Ianko Tchoukanski



TIN to Nodes

ToolBox Implementation .NET Implementation

Exports the Nodes of an ESRI TIN or a PolygonZ TIN to a new point feature class. 

Inputs:

An ESRI TIN or PolygonZ TIN

Outputs:

New Point or PointZ feature class. 

A new field is added to the point attribute table.

ET_Spot  - the Z value of the Node

ToolBox implementation

Command line syntax - two different toolbox tools available depending on the type of the input TIN. Check the color coding for

specifics.

ETS_GPNodesEsriTIN <Input ESRI TIN>  <Out Feature Class>  {3D Features}

ETS_GPNodesPolygonZTIN <Input PolygonZ TIN>  <Out Feature Class>  {3D Features}

Parameters

Expression Explanation

<Input ESRI TIN> An ESRI TIN layer or dataset

<Input PolygonZ TIN> A PolygonZ TIN (feature class)

<Out Feature Class> A String - the full name of the output feature class.

{3D Features} A Boolean indicating whether the result will be PointZ or Point

Scripting syntax

ETS_GPNodesEsriTIN (Input ESRI TIN, Out Feature Class, 3D Features)

ETS_GPNodesPolygonZTIN (Input PolygonZ TIN, Out Feature Class, 3D Features)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

NodesESRITin (inTin As ITin, sOutFeature As String, bZ As Boolean) As IFeatureClass

NodesPolygonZTin (inFeatureClass As IFeatureClass, sOutFeature As String, bZ As Boolean) As IFeatureClass

Copyright © Ianko Tchoukanski



Polygon To Multipatch

ToolBox Implementation .NET Implementation

Converts a polygon feature class to a Multipatch feature class. The Z values are interpolated from an ESRI TIN or PolygonZ TIN.

The portion of the TIN within each polygon is extracted. A new TIN is interpolated from the participating nodes of the reference

TIN surface and the vertices of the polygon for which the Z value is interpolated from the TIN. The new TIN is stored as a

Multipatch geometry.

Inputs:

A Polygon feature class

An ESRI TIN or PolygonZ TIN

Outputs:

New Multipatch feature class. 

New fields are added to the attribute table of the Multipatch feature class.

ET_ElMin  - the minimum Z value

ET_ElMax - the maximum Z value

ETSlopeMax - the maximum slope

ET_AreaZ - the 3D area

ET_Area - the 2D area

ToolBox implementation

Command line syntax - two different toolbox tools available depending on the type of the input TIN. Check the color coding for

specifics.

ETS_GPPolygonToMultipatchEsriTIN <Input Dataset> <Input ESRI TIN>  <Out Feature Class>

ETS_GPPolygonToMultipatchPolygonZTIN <Input Dataset> <Input PolygonZ TIN>  <Out Feature Class>

Parameters

Expression Explanation

<Input Dataset> A Polygon feature layer or feature class

<Input ESRI TIN> An ESRI TIN layer or dataset

<Input PolygonZ TIN> A PolygonZ TIN (feature class)

<Out Feature Class> A String - the full name of the output feature class.

Scripting syntax

ETS_GPPolygonToMultipatchEsriTIN (Input Dataset, Input ESRI TIN, Out Feature Class)

ETS_GPPolygonToMultipatchPolygonZTIN (Input Dataset, Input PolygonZ TIN, Out Feature Class)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

PolygonToMultipatchEsriTIN (inFeatureClass As IFeatureClass, inTin As ITin, sOutFeature As String) As IFeatureClass



PolygonToMultipatchPolygonZTIN (inFeatureClass As IFeatureClass, polygonZTin As IFeatureClass, sOutFeature As String)

As IFeatureClass

Copyright © Ianko Tchoukanski



Multipatch to Polygons

ToolBox Implementation .NET Implementation

Converts a Multipatch feature class to a PolygonZ feature class. Several 3D characteristics are calculated for each polygon

and stored in the polygon attribute table.

If the input Multipatch is constructed by Triangle Strips and Triangle Fan geometries, the resulting feature class can be treated

as a PolygonZ TIN

Inputs:

A Multipatch feature class

Outputs:

New PolygonZ feature class. 

New fields are added to the attribute table of the Multipatch feature class.

ET_ElMin - minimum elevation values for each triangle

ET_ElMax - maximum elevation values for each triangle

ET_ElMean - mean elevation values for each triangle

ET_Slope_D - the slope (maximum rate of elevation change) of each triangle in Degrees (from 0 to 90)

ET_Sope_P - the slope (maximum rate of elevation change) of each triangle in percents (from 0 to 100%)

ET_Aspect - the aspect (compass direction of the slope - 0 is North, 90 degrees - East, 180 degrees - South,

270 - West)  of each triangle

ET_AreaZ - the 3D area of each triangle

ET_Area - the 2D area of each triangle

ToolBox implementation

Command line syntax

ETS_GPMultipatchToPolygon <Input Dataset>  <Out Feature Class>

Parameters

Expression Explanation

<Input Dataset> A Multipatch feature layer or feature class

<Out Feature Class> A String - the full name of the output feature class.

Scripting syntax

ETS_GPMultipatchToPolygon (Input Dataset, Out Feature Class)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

MultipatchToPolygon (inFeatureClass As IFeatureClass, sOutFeature As String) As IFeatureClass

Copyright © Ianko Tchoukanski



Features to Raster

ToolBox Implementation .NET Implementation

Converts features (Points, Polylines, Polygons) to a raster dataset.

Inputs:

A feature layer (Point, Polygon, Points, Polylines, Polygons)

Output raster name and format

Cell Size of the output raster

Value field -  a field from the attribute table to be used as a source for the values of the raster. If the input is of PointZ

or PolylineZ type, the Z values of the features can be used as source for the raster values

Priority field (optional) - a field from the attribute table which values define how the values will be stored in the raster in

case two or more features cover the same cell. If for example two overlapping polygons are converted to a raster, the

polygon with the larger value in this field will be stored in the raster.

Source polygons Result Raster

Extent from existing raster layer (optional). If selected the extent of an existing raster layer will be used for the output,

otherwise the extent of the input feature class will be used.

For a polyline layer only - rasterize the polyline including all cells touched (optional).

Output

A raster with data type depending on the input value field. If the field is Integer the result will be integer, if the field is

Double, the result will be a floating point raster.

Notes:

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

The feature class must be in a projected coordinate system

ToolBox implementation

Command line syntax

ETS_GPFeaturesToRaster <Input Dataset>  <Out Raster> <Value Field> < Cell Size> {Priority Field} {Extents Raster} {Thick

Line}

Parameters

Expression Explanation



<Input Dataset> A Point, Polyline or Polygon layer or feature class

<Out Raster> A String - the full name of the output raster (A raster with the same full name should not

exist). The output raster type depends on the extension of the output file(see Notes

above)

<Value Field> A String representing the name of the field which values are going to be used for

interpolation.

<Cell Size> A Double representing the cell size of the output raster.

{Priority Field} A String representing the name of the field which values are going to be used define

the priority of the features. See explanations above

{Extents Raster} A raster layer or raster dataset to be used to define the extents of the output raster

{Thick Line} For polylines include all cells touched by the polyline.

Scripting syntax

ETS_GPFeaturesToRaster (Input Dataset, Out Raster, Value Field, Cell Size, Priority Field, Extents Raster, Thick Line)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

FeaturesToRaster (inFeatureClass As IFeatureClass, sOutRaster As String, sValueField As String, dCellSize As Double,

Optional sPriorityField As String = "", Optional extentRaster As IRaster = Nothing, Optional bThick As Boolean = False) As

IRasterDataset2 

Copyright © Ianko Tchoukanski



ESRI TIN to Raster

ToolBox Implementation .NET Implementation

Converts an ESRI TIN to a raster

Inputs:

An ESRI TIN

Output raster name and format

Cell Size of the output raster

Output

A floating point raster.

Notes:

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

The input TIN must be in a projected coordinate system

ToolBox implementation

Command line syntax

ETS_GPEsriTINToRaster<Input ESRI TIN>  <Out Raster> <Cell Size>

Parameters

Expression Explanation

<Input ESRI TIN> An ESRI TIN dataset or layer

<Out Raster> A String - the full name of the output raster (A raster with the same full name should not exist).

The output raster type depends on the extension of the output file(see Notes above)

<Cell Size> A Double representing the cell size of the output raster.

Scripting syntax

ETS_GPEsriTINToRaster(Input ESRI TIN,  Out Raster, Cell Size)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

EsriTinToRaster (inTin As ITin, sOutRaster As String, dCellSize As Double) As IRasterDataset2

Copyright © Ianko Tchoukanski



Features To 3D

ToolBox Implementation .NET Implementation

A set of three functions used to convert 2D feature classes to 3D feature classes by interpolating the Z values from a reference

surface - Raster, ESRI TIN, PolygonZ TIN.

If the input feature class is of Polyline or Polygon type, additional vertices can be added to the geometries in order to fit them

better to the terrain.

If the reference surface is a Raster, the user can specify sample distance. New vertices will be added to the geometry

at the sample distance specified, then Z values will be interpolated for all vertices. If sample distance is not assigned

or set to 0, no new vertices will be added - Z values will be interpolated for the original vertices only

If the reference surface is a TIN, the user can specify if only the original vertices to be used or new vertices to be

inserted. 

Inputs:

A Point, Polyline or Polygon feature class

A reference surface - Raster, ESRI TIN or PolygonZ TIN

Outputs:

New PointZ, PolylineZ or PolygonZ feature class. 

The attributes of the input dataset are preserved.

ToolBox implementation

Command line syntax  - Three different toolbox tools available depending on the reference surface. Check the color coding for

specifics.

ETS_GPFeaturesTo3DRaster <Input Dataset>  <Reference Raster> <Out Feature Class> {Sample Distance}

ETS_GPFeaturesTo3DEsriTIN <Input Dataset>  <Reference TIN> <Out Feature Class> {Vertices Only}

ETS_GPFeaturesTo3DPolygonZTIN <Input Dataset>  <Reference TIN> <Out Feature Class> {Vertices Only}

Parameters

Expression Explanation

<Input Dataset> A Point, Polyline or Polygon layer or feature class

<Reference Raster> A Raster layer or Raster dataset.

<Reference TIN> An ESRI TIN layer or dataset

<Reference TIN> A PolygonZ TIN (feature class or feature layer)

<Out Feature Class> A String - the full name of the output feature class

{Sample Distance} A Double representing the sample distance

{Vertices Only} A Boolean. If TRUE Z values will be interpolated for the existing vertices of the input

features. If False new vertices will be added to the input features in the places of

intersection with the TIN edges.

{Vertices Only} A Boolean. If TRUE Z values will be interpolated for the existing vertices of the input

features. If False new vertices will be added to the input features in the places of

intersection with the TIN edges.



Scripting syntax

ETS_GPFeaturesTo3DRaster (Input Dataset, Reference Raster, Out Feature Class, Sample Distance)

ETS_GPFeaturesTo3DEsriTIN (Input Dataset, Reference TIN, Out Feature Class, Vertices Only)

ETS_GPFeaturesTo3DPolygonZTIN (Input Dataset, Reference TIN, Out Feature Class, Vertices Only)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

FeaturesTo3DRaster (inFeatureClass As IFeatureClass, inRasterDataset As IRasterDataset2, sOutFeature As String,

dSample As Double) As IFeatureClass

FeaturesTo3DESRITin (inFeatureClass As IFeatureClass, inTin As ITin, sOutFeature As String, Optional bVertex As Boolean

= False) As IFeatureClass

FeaturesTo3DPolygonZTin (inFeatureClass As IFeatureClass, inPolygonZTin As IFeatureClass, sOutFeature As String,

Optional bVertex As Boolean = False) As IFeatureClass

Copyright © Ianko Tchoukanski



TIN Slope

ToolBox Implementation .NET Implementation



Calculates the slope of the TIN Triangles of the input ESRI TIN or PolygonZ TIN in percent or degrees (0 to 90). Categorizes

the triangles and groups them based on the slope. The user can input a text file to be used for defining the groups to be

created. If not such file is provided the default grouping will be used.

Inputs:

A ESRI TIN or PolygonZ TIN

Slope option

Percent

Degrees

Optional: Class Breaks text file

Outputs:

A polygon feature class 

A new field ET_SCode will be added to the polygon attribute table. The values in this field will indicate the slope

groups.

Default breaks

Slope in degrees Slope in percents

0 - 0.5

0.5 - 1.5

1.5 - 3.0

3.0 - 6.0

6.0 - 12.0

12.0 - 25.0

25.0 - 45.0

45.0 - 90.0

0 - 1.0

1.0 - 2.0

2.0 - 5.0

5.0 -10.0

10.0 -20.0

20.0 - 50.0

50.0 - 100.0

Above 100

Breaks file format

The file consist of lines with 2 comma delimited values. The first value is the break value and the second the Group ID. The

Group ID can be numeric or string, the only requirement is to be unique. The first value will define the first group, if for example



the value is 5, the first group will be 0 to 5. Example text file:

Break, Group

1, Flat

5,Low

10,Low To Moderate

25,Moderate

35,High

The file on the left will produce 6 groups

0 - 1 Flat

1 - 5 Low

5 - 10 Low To Moderate

10 - 25 Moderate

25 - 35 High

> 35 Above High

ToolBox implementation

Command line syntax - two different toolbox tools available depending on the type of the input TIN. Check the color coding for

specifics.

ETS_GPSlopeFromEsriTIN <Input ESRI TIN>  <Out Feature Class> <Slope Units> {Class Break File}

ETS_GPSlopeFromPolygonZTIN <Input PolygonZ TIN>  <Out Feature Class>  {Class Break File}

Parameters

Expression Explanation

<Input ESRI TIN> An ESRI TIN layer or dataset

<Input PolygonZ TIN> A PolygonZ TIN (feature class)

<Out Feature Class> A String - the full name of the output feature class.

<Slope Units> A String indicating the units to be used for slope. Valid values "Degree", "Percent"

{Class Break File} A String - the full name of the class breaks file.

Scripting syntax

ETS_GPSlopeFromEsriTIN (Input ESRI TIN, Out Feature Class, Slope Units, Class Break File)

ETS_GPSlopeFromPolygonZTIN (Input PolygonZ TIN, Out Feature Class, Slope Units, Class Break File)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

SlopeFromEsriTin (inTin As ITin, sOutFName As String, sPercent As String, Optional sClassBreakFile As String = "") As

IFeatureClass 

SlopeFromPolygonZTin (inFeatureClass As IFeatureClass, sOutFName As String, sPercent As String, Optional

sClassBreakFile As String = "") As IFeatureClass 

Copyright © Ianko Tchoukanski



TIN Aspect

ToolBox Implementation .NET Implementation



Calculates the aspect (compass direction of the slope) for each TIN Triangle. Groups the triangles based on their Aspect

category and creates a polygon dataset with 9 Aspect categories.

Inputs:

A ESRI TIN or PolygonZ TIN

Outputs:

A polygon feature class 

A new field ET_ACode will be added to the polygon attribute table. The values in this field will indicate the aspect

groups.

N - North ( 0 to 22.5 and 337.5 to 360)

NE - North East (22,5 to 67.5)

E - East (67.5 to 112.5)

SE - South East (112.5 to 157.5)

S - South (67.5 to 112.5)

SW - South West (202.5 to 247.5)

W - West (247.5 to 292.5)

NW - North West (292.5 to 337.5)

U - Undefined - Slope = 0 

ToolBox implementation

Command line syntax - two different toolbox tools available depending on the type of the input TIN. Check the color coding for

specifics.

ETS_GPAspectFromEsriTIN <Input ESRI TIN>  <Out Feature Class>

ETS_GPAspectFromPolygonZTIN <Input PolygonZ TIN>  <Out Feature Class>

Parameters

Expression Explanation



<Input ESRI TIN> An ESRI TIN layer or dataset

<Input PolygonZ TIN> A PolygonZ TIN (feature class)

<Out Feature Class> A String - the full name of the output feature class.

Scripting syntax

ETS_GPAspectFromEsriTIN (Input ESRI TIN, Out Feature Class)

ETS_GPAspectFromPolygonZTIN (Input PolygonZ TIN, Out Feature Class)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

AspectFromEsriTin (inTin As ITin, sOutFName As String) As IFeatureClass

AspectFromPolygonZTin (inFeatureClass As IFeatureClass, sOutFName As String) As IFeatureClass

Copyright © Ianko Tchoukanski



Interpolate Contours

ToolBox Implementation .NET Implementation

Interpolates contours from an ESRI TIN or PolygonZ TIN. The contours can be created as PolylineZs with constant Z values

representing the elevation. 

Inputs:

An ESRI TIN or PolygonZ TIN

Base value - the contour from which to begin generation of contours.

Contour interval - Z value difference between adjacent contours in map units.

Option for interpolating 3D contours.

Outputs:

New polyline feature class.

A new field ET_Height is added to the attribute table. The values of this field contain the Z value for each contour.

Notes:

If flat triangles (see TIN Notes ) are present, some small problems might occur in the contours. These problems are

easy to identify using Export Nodes Wizard. Since the contour lines never intersect each other, there should not be

Regular Nodes in the contour layer. A regular node in this case will indicate an error ( most probably caused by a flat

triangle ). The excess polyline can be deleted.

ToolBox implementation

Command line syntax - two different toolbox tools available depending on the type of the input TIN. Check the color coding for

specifics.

ETS_GPContoursFromEsriTIN <Input ESRI TIN>  <Out Feature Class> <Base Contour> <Contour Interval> {3D Contours}

ETS_GPContoursFromPolygonZTIN <Input PolygonZ TIN>  <Out Feature Class> <Base Contour> <Contour Interval> {3D

Contours}

Parameters

Expression Explanation

<Input ESRI TIN> An ESRI TIN layer or dataset

<Input PolygonZ TIN> A PolygonZ TIN (feature class)

<Out Feature Class> A String - the full name of the output feature class.

<Base Contour>
A Double representing the Z level of the contour from which to begin generation of

contours.

<Contour Interval> A Double representing the contour interval

 {3D Contours}  A Boolean indicating whether the output to be Polyline or PolylineZ feature class 

Scripting syntax

ETS_GPContoursFromEsriTIN (Input ESRI TIN, Out Feature Class, Base Contour, Contour Interval, 3D Contours)

ETS_GPContoursFromPolygonZTIN (Input PolygonZ TIN, Out Feature Class, Base Contour, Contour Interval, 3D Contours)

See the explanations above:

<> - required parameter



{} - optional parameter

.NET implementation

(Go to TOP)

InterpolateContoursEsriTin (inTin As ITin, sOutFName As String, baseContour As Double, contourInterval As Double, Optional

bZ As Boolean = False) As IFeatureClass 

InterpolateContoursPolygonZTin (inPolygonZTIN As IFeatureClass, sOutFName As String, baseContour As Double,

contourInterval As Double, Optional bZ As Boolean = False) As IFeatureClass

Copyright © Ianko Tchoukanski



Volume of TIN

ToolBox Implementation .NET Implementation

Calculates the Volume and 3D Area of an ESRI TIN or PolygonZ TIN above and below a horizontal reference plane defined by

the user specified level. The function analyzes the location of each triangle relatively to the reference plane and calculates its

volume and area below and above the plane. The result is the accumulated values for the below and above portions of the

triangles stored in a new or existing text file.

Inputs:

An ESRI TIN or PolygonZ TIN

Level of the reference plane.

Output text file

Outputs:

The output text file will contain

The name of the Surface

The level of the reference plane

Volume above the plane

Volume below the plane

3D Area below the plane

3D Area above the plane

Example:

 

Surface: dtm_tin

Level: 187

Volume Above: 701506210.390127

Volume Below: 208341325.899824

Area Above: 9690039.84649869

Area Below: 6662731.4224316

ToolBox implementation

Command line syntax - two different toolbox tools available depending on the type of the input TIN. Check the color coding for

specifics.

ETS_GPVolumeOfEsriTIN <Input ESRI TIN>  <Out File> <Level>

ETS_GPVolumeOfPolygonZTIN <Input PolygonZ TIN>  <Out File> <Level>

Parameters

Expression Explanation

<Input ESRI TIN> An ESRI TIN layer or dataset

<Input PolygonZ TIN> A PolygonZ TIN (feature class)

<Out File> A String - the full name of the output text file.

<Level> A Double indicating the level of the reference plane for which the volume calculation

will be performed.

Scripting syntax



ETS_GPVolumeOfEsriTIN (Input ESRI TIN, Out File , Level)

ETS_GPVolumeOfPolygonZTIN (Input PolygonZ TIN, Out File, Level)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

VolumeOfEsriTin (inTin As ITin, sOutTextFile As String, dLevel As Double) As Boolean

VolumeOfPolygonZTin (inPolygonZTin As IFeatureClass, sOutFName As String, dLevel As Double) As Boolean

Copyright © Ianko Tchoukanski



Volume of Polygons

ToolBox Implementation .NET Implementation

Calculates the Volume and 3D Area of the polygons from the input polygon dataset based on user assigned level or different

levels for each polygon from a field in the attribute table and the surface defined by an ESRI TIN or PolygonZ TIN. The

Volume calculated for each polygon is split in two portions -  above and below the surface. 

Inputs:

A polygon feature class

An ESRI TIN or PolygonZ TIN

Level for all polygons or field from the attribute table containing the level information.

Outputs:

A polygon feature class with several new fields added

ET_VAbove - Volume of the polygon above the surface

ET_VBelow - Volume of the polygon below the surface

ET_Area3D - 3D Area of the polygon

ET_Area - 2D Area of the polygon

All attributes of the original polygons are preserved.

ToolBox implementation

Command line syntax - two different toolbox tools available depending on the type of the input TIN. Check the color coding for

specifics.

ETS_GPVolumeOfPolygonsEsriTIN <Input Dataset> <Input ESRI TIN>  <Out Feature Class> {Level Field} {Level}

ETS_GPVolumeOfPolygonsPolygonZTIN <Input Dataset> <Input PolygonZ TIN>  <Out Feature Class>  {Level Field} {Level}

Parameters

Expression Explanation

<Input Dataset> A Polygon feature layer or feature class

<Input ESRI TIN> An ESRI TIN layer or dataset

<Input PolygonZ TIN> A PolygonZ TIN (feature class)

<Out Feature Class> A String - the full name of the output feature class.

 {Level Field} A String indicating the field name of the input polygon attribute table to be used for

levels of the polygons

{Level} A Double indicating the level for all input polygons

Scripting syntax

ETS_GPVolumeOfPolygonsEsriTIN (Input Dataset, Input ESRI TIN, Out Feature Class, Level Field)

ETS_GPVolumeOfPolygonsPolygonZTIN (Input Dataset, Input PolygonZ TIN, Out Feature Class, Level Field)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)



VolumeOfPolygonsEsriTin (inFeatureClass As IFeatureClass, inTin As ITin, sOutFName As String, dLevel As Double,

Optional sLevelField As String = "") As IFeatureClass 

VolumeOfPolygonsPolygonZTin (inFeatureClass As IFeatureClass, inPolygonZTin As IFeatureClass, sOutFName As String,

dLevel As Double, Optional sLevelField As String = "") As IFeatureClass

Copyright © Ianko Tchoukanski



Cut/Fill Analysis

ToolBox Implementation .NET Implementation

Calculates the cut and fill areas for each polygon from a polygon feature class based on user assigned level or different levels

for each polygon from a field in the attribute table and the surface defined by an ESRI TIN or PolygonZ TIN. If a single polygon

has both cut and fill areas it is split into one or more polygons. The Volume and 3D area are calculated for each resulting

polygon. 

Inputs:

A polygon feature class

An ESRI TIN or PolygonZ TIN

Level for all polygons or field from the attribute table containing the level information.

Outputs:

A polygon feature class with several new fields added

ET_ID - contains the FID of the original polygon

ET_Status - the classification of the polygon based on its Cut/Fill status

ET_Cut - the volume of the polygon with a Status = Cut

ET_Fill - the volume of a polygon with Status = Fill

ET_Area3D - the 3D area of the polygon

ET_Area - the 2D Area of the polygon

All attributes of the original polygons are preserved.

ToolBox implementation

Command line syntax - two different toolbox tools available depending on the type of the input TIN. Check the color coding for

specifics.



ETS_GPCutFillEsriTIN <Input Dataset> <Input TIN>  <Out Feature Class> {Level Field} {Level}

ETS_GPCutFillPolygonZTIN <Input Dataset> <Input TIN>  <Out Feature Class>  {Level Field} {Level}

Parameters

Expression Explanation

<Input Dataset> A Polygon feature layer or feature class

<Input ESRI TIN> An ESRI TIN layer or dataset

<Input PolygonZ TIN> A PolygonZ TIN (feature class)

<Out Feature Class> A String - the full name of the output feature class.

 {Level Field} A String indicating the field name of the input polygon attribute table to be used for

levels of the polygons

{Level} A Double indicating the level for all input polygons

Scripting syntax

ETS_GPCutFillEsriTIN (Input Dataset, Input ESRI TIN, Out Feature Class, Level Field)

ETS_GPCutFillPolygonZTIN (Input Dataset, Input PolygonZ TIN, Out Feature Class, Level Field)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

CutFillEsriTin(inFeatureClass As IFeatureClass, inTin As ITin, sOutFName As String, dLevel As Double, Optional sLevelField

As String = "") As IFeatureClass

CutFillPolygonZTin(inFeatureClass As IFeatureClass, inPolygonZTin As IFeatureClass, sOutFName As String, dLevel As

Double, Optional sLevelField As String = "") As IFeatureClass

Copyright © Ianko Tchoukanski



Visibility Analysis

ToolBox Implementation .NET Implementation

Calculates the visibility from a set of observer points to the features of the target dataset. If the target dataset is of polyline or

polygon type, the visibility to the vertices of the geometries is calculated. The result will be a point dataset (vertices of the

targets). For each point the number of observers that can see the point are recorded in the attribute table. 

Inputs:

A point dataset (Observers). The attribute table can have a numeric field which values will indicate the offset of the

observers above the terrain.

A point, polyline or polygon dataset (Targets). The attribute table can have a numeric field which values will indicate

the offset of the targets above the terrain.

A surface - Raster, ESRI TIN or PolygonZ TIN

Options (see Line of Sight discussion)

Apply Earth curvature correction

Apply air refraction corrections

Apply radio wave corrections.

Outputs:

A point feature class

ET_Visible - the number of observers that can see the point

All attributes of the original polygons are preserved.

Notes:

The function is resources hungry and time consuming. Do not use it on large datasets. Recommended is O x T  < 500

where 



O = Number Observers 

T =  Number Target Points

ToolBox implementation

Command line syntax - two different toolbox tools available depending on the type of the input TIN. Check the color coding for

specifics.

ETS_GPVisibilityEsriTIN <Observers Dataset> <Target Dataset> <Input ESRI TIN>  <Out Feature Class> <Observer Offset

Field> <Target Offset Field> {Use Earth Curvature}  {Refraction Correction} {Radio Waves Correction} {Cutoff Distance}

ETS_GPVisibilityPolygonZTIN <Observers Dataset> <Target Dataset> <Input PolygonZ TIN>  <Out Feature Class>

<Observer Offset Field> <Target Offset Field> {Use Earth Curvature}  {Refraction Correction} {Radio Waves Correction}

{Cutoff Distance}

Parameters

Expression Explanation

<Observers Dataset> A Point feature layer or feature class

<Target Dataset> A  Point or Polyline feature layer or feature class

<Input ESRI TIN> An ESRI TIN layer or dataset

<Input PolygonZ TIN> A PolygonZ TIN (feature class)

<Out Feature Class> A String - the full name of the output feature class.

<Observer Offset Field>
A String representing the name of the field which values are going to be used as offset

of the observers above the raster.

<Target Offset Field>
A String representing the name of the field which values are going to be used as offset

of the target above the raster.

 {Use Earth Curvature} A Boolean

 {Refraction Correction} A Double representing the air refraction coefficient - Default value = 0.13

 {Radio Waves Correction} A Double representing the radio waves correction coefficient - Default value = 1.333333

 {Cutoff Distance} A Double representing the Cutoff distance.

Scripting syntax

ETS_GPVisibilityEsriTIN (Observers Dataset, Target Dataset, Input ESRI TIN, Out Feature Class, Observer Offset Field,

Target Offset Field, Use Earth Curvature, Refraction Correction,  Radio Waves Correction, Cutoff Distance)

ETS_GPVisibilityPolygonZTIN (Observers  Dataset, Target Dataset, Input PolygonZ TIN, Out Feature Class, Observer Offset

Field, Target Offset Field, Use Earth Curvature, Refraction Correction,  Radio Waves Correction, Cutoff Distance)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

VisibilityEsriTin (inTin As ITin, observerFeatures As IFeatureClass, targetFeatures As IFeatureClass, sOutFName As String,

observerOffsetField As String, targetOffsetField As String, bCurvature As Boolean, Optional dRefraction As Double = 0,

Optional dRadio As Double = 1) As IFeatureClass 



VisibilityPolygonZTin (inPolygonZTin As IFeatureClass, observerFeatures As IFeatureClass, targetFeatures As IFeatureClass,

sOutFName As String, observerOffsetField As String, targetOffsetField As String, bCurvature As Boolean, Optional

dRefraction As Double = 0, Optional dRadio As Double = 1) As IFeatureClass

Copyright © Ianko Tchoukanski



Identify Sinks and Peaks from a TIN

ToolBox Implementation .NET Implementation

Analyses the triangles of the input TIN, finds the nodes that represent sinks (pits) or peaks. A TIN node participates in several

triangles, each triangle is created from 3 nodes.

If a node has maximum value in all triangles in which it

participates it represents a Peak.

If a node has minimum value in all triangles in which it

participates it represents a Sink or Pit.

 

While the peaks in most of the cases represent natural features, the sinks with some exceptions (natural lakes and

depression) are caused by incorrect data or interpolation.

Inputs:

An ESRI TIN or PolygonZ TIN

Output feature class

Option to include/exclude in the analysis the flat triangles. Since all nodes in a flat triangle have the same Z value, if

included in the analysis they in most of the cases will be either peaks or sinks.

Outputs:

New Point or PointZ feature class. 

A new field is added to the point attribute table.

ET_Type  - the type of the node - Peak or Sink

ToolBox implementation

Command line syntax - two different toolbox tools available depending on the type of the input TIN. Check the color coding for

specifics.

ETS_GPPeaksAndSinksEsriTIN <Input ESRI TIN>  <Out Feature Class>  {3D Features} {Ignore Flat Triangles}

ETS_GPPeaksAndSinksPolygonZTIN <Input PolygonZ TIN>  <Out Feature Class>  {3D Features}  {Ignore Flat Triangles}

Parameters

Expression Explanation

<Input ESRI TIN> An ESRI TIN layer or dataset



<Input PolygonZ TIN> A PolygonZ TIN (feature class)

<Out Feature Class> A String - the full name of the output feature class.

{3D Features} A Boolean indicating whether the result will be PointZ or Point

{Ignore Flat Triangles} A Boolean indicating whether the flat triangles to be included in the analysis.

Scripting syntax

ETS_GPPeaksAndSinksEsriTIN (Input ESRI TIN, Out Feature Class, 3D Features,  Ignore Flat Triangles)

ETS_GPPeaksAndSinksPolygonZTIN (Input PolygonZ TIN, Out Feature Class, 3D Features  Ignore Flat Triangles)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

PeaksAndSinksFromESRITin (inTin As ITin, sOutFName As String, Optional bZ As Boolean = False, Optional bNoFlat As

Boolean = False) As IFeatureClass 

PeaksAndSinksFromPolygonZTin (polygonZTin As IFeatureClass, sOutFName As String, Optional bZ As Boolean = False, _

Optional bNoFlat As Boolean = False) As IFeatureClass 

Copyright © Ianko Tchoukanski



Raster Slope

ToolBox Implementation .NET Implementation



Calculates the slope of each cell of the input raster in percent or degrees. The result added to ArcMap is categorized in 8

groups.

Read more about Slope and its importance here

Inputs:

Input raster dataset 

Output raster name and format

The unit of the output slope - Degrees or Percentage (rise/run)

Output:

A floating point raster.

Example:

Source Elevation raster

Result Slope raster (Degrees option used)

Notes:

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

The input raster must be in a projected coordinate system.

ToolBox implementation

Command line syntax

ETS_GPRasterSlope <Input Raster>  <Out Raster> <Slope Units>

Parameters

Expression Explanation

http://en.wikipedia.org/wiki/Slope


<Input Raster> A Raster dataset or Raster layer

<Out Raster> A String - the full name of the output raster (A raster with the same full name should not exist).

The output raster type depends on the extension of the output file(see Notes above)

<Slope Units> A String indicating the slope units. Valid inputs "Degrees" and "Percent"

Scripting syntax

ETS_GPRasterSlope (Input Raster,  Out_Raster, Slope Units)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

RasterSlope (inRasterDataset As IRasterDataset2, sOutRaster As String, bDegrees As Boolean) As IRasterDataset2

Copyright © Ianko Tchoukanski



Raster Aspect

ToolBox Implementation .NET Implementation

Calculates the aspect (the direction in which slope faces) of each cell of the input raster in degrees. The result added to

ArcMap is categorized in 9 groups.

N - North ( 0 to 22.5 and 337.5 to 360)

NE - North East (22,5 to 67.5)

E - East (67.5 to 112.5)

SE - South East (112.5 to 157.5)

S - South (67.5 to 112.5)

SW - South West (202.5 to 247.5)

W - West (247.5 to 292.5)

NW - North West (292.5 to 337.5)

U - Undefined - Slope = 0

Read more about Aspect and its importance here.

Inputs:

Input raster dataset 

Output raster name and format

Output:

A floating point raster.

Example:

Source Elevation raster

Result Aspect raster

Notes:

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

http://en.wikipedia.org/wiki/Aspect_(geography)


.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

The input raster must be in a projected coordinate system.

ToolBox implementation

Command line syntax

ETS_GPRasterAspect <Input Raster>  <Out Raster>

Parameters

Expression Explanation

<Input Raster> A Raster dataset or Raster layer

<Out Raster> A String - the full name of the output raster (A raster with the same full name should not exist).

The output raster type depends on the extension of the output file(see Notes above)

Scripting syntax

ETS_GPRasterAspect (Input Raster,  Out Raster)

.NET implementation

(Go to TOP)

RasterAspect (inRasterDataset As IRasterDataset2, sOutRaster As String) As IRasterDataset2

Copyright © Ianko Tchoukanski



Raster Hillshade

ToolBox Implementation .NET Implementation

Calculates the shading of a terrain raster based on user defined position of the light source (The Sun). The position of the light

source is defined with Azimuth (0 to 360) and Altitude (0 to 90). The combination of the Hillshade overlaid with a

semi-transparent elevation raster gives more realistic look of the terrain (see example below).

Read more about Hillshade and its importance here.

Inputs:

Input raster dataset 

Output raster name and format

Light azimuth (0 to 360)

Light altitude(0 to 90)

Output:

A floating point raster.

Example:

Source elevation raster

Result Hillshade raster

Elevation raster (50% transparency) over the Hillshade raster

Notes:

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

http://en.wikipedia.org/wiki/Hillshade


(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

The input raster must be in a projected coordinate system.

ToolBox implementation

Command line syntax

ETS_GPRasterHillshade <Input Raster>  <Out Raster> {Light Azimuth} {Light Altitude}

Parameters

Expression Explanation

<Input Raster> A Raster dataset or Raster layer

<Out Raster> A String - the full name of the output raster (A raster with the same full name should not exist).

The output raster type depends on the extension of the output file(see Notes above)

{Light Azimuth} A Double representing azimuth of the light source (0 to 360). 0 indicates North, 90 - East, 180 -

South, 270 - West (default is 315)

{Light Altitude} A Double representing the altitude of the light source  in degrees (0 to 90) (default is 45)

Scripting syntax

ETS_GPRasterHillshade  (Input Raster,  Out_Raster, Light Azimuth, Light Altitude)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

RasterHillshade (inRasterDataset As IRasterDataset2, sOutRaster As String, Optional dAzimuth As Double = 315, Optional

dAltitude As Double = 45) As IRasterDataset2 

Copyright © Ianko Tchoukanski



Contours from Raster

ToolBox Implementation .NET Implementation

Interpolates contours from a raster. The contours can be created as PolylineZs with constant Z values representing the

elevation. 

Inputs: 

A raster dataset.

Base value - the contour from which to begin generation of contours.

Contour interval - Z value difference between adjacent contours in map units.

Option for interpolating 3D contours.

Option for smoothing the contours.

 

Outputs:

New polyline feature class. If the option for creating 3D contours is used the output will be PolylineZ feature class.

A new field ET_Height is added to the attribute table. The values of this field contain the Z value for each contour.

Notes:

The smooth polylines option might be time consuming.

The input raster must have a projected coordinate system.

ToolBox implementation

Command line syntax

ETS_GPContoursFromRaster <Input Raster>  <Out Feature Class> <Base Contour> <Contour Interval> {3D Contours}

Parameters

Expression Explanation

<Input Raster> A Raster dataset or Raster layer

<Out Feature Class> A String - the full name of the output feature class.

<Base Contour> A Double representing the Z level of the contour from which to begin generation of contours.

<Contour Interval> A Double representing the contour interval

 {3D Contours}  A Boolean indicating whether the output to be Polyline or PolylineZ feature class 

Scripting syntax

ETS_GPContoursFromRaster (Input Raster, Out Feature Class , Base Contour, Contour Interval, 3D Contours)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

InterpolateContoursRaster (inRasterDataset As IRasterDataset2, sOutFName As String, baseC As Double, contInt As Double,

Optional bZ As Boolean = False) As IFeatureClass 

Copyright © Ianko Tchoukanski



Raster Viewshed

ToolBox Implementation .NET Implementation

Calculates the visibility from a set of observer points to each of the cells of the output raster based on the input surface raster.  

Inputs:

A point dataset (Observers). The attribute table can have a numeric field which values will indicate the offset of the

observers above the terrain.

A raster dataset representing the surface for which the analysis will be performed.

A field in the point feature class that will indicate the offset of the observer above the surface.

A number that will indicate the offset of the target above the surface.

Cutoff distance (optional) - how far an observer can see

Options (see Line of Sight discussion)

Apply Earth curvature correction

Apply air refraction corrections

Apply radio wave corrections.

Outputs:

An integer raster. Each cell will have as a value the number of observers from which this cell is visible.

Example:

Viewshed from 5 observers symbolized with 

unique value - the number of observers that can

see each cell.

Viewshed from 5 observers classified in 2 

classes:

0 - Non-visible.

>0 - Visible



Notes:

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

The input  point feature class and raster must be in the same projected coordinate system.

ToolBox implementation

Command line syntax

ETS_GPViewshed <Observers> <Input Raster>  <Out Raster> <Observer Offset Field> <Target Offset> {Use Earth

Curvature}  {Refraction Correction} {Radio Waves Correction} {Cutoff Distance}

Parameters

Expression Explanation

<Observers> A Point layer or feature class

<Input Raster> A  Raster dataset or Raster layer

<Out Raster> A String - the full name of the output raster (A raster with the same full name should not

exist). The output raster type depends on the extension of the output file(see Notes

above)

<Observer Offset Field> A String representing the name of the field which values are going to be used as offset

of the observers above the raster.

<Target Offset> A Double indicating the offset of the target above the surface.

 {Use Earth Curvature} A Boolean

 {Refraction Correction} A Double representing the air refraction coefficient - Default value = 0.13

 {Radio Waves Correction} A Double representing the radio waves correction coefficient - Default value = 1.333333

 {Cutoff Distance} A Double representing the Cutoff distance.

Scripting syntax

ETS_GPViewshed (Observers, Input Raster,  Out Raster, Observer Offset Field, Target Offset, Use Earth Curvature,

Refraction Correction,  Radio Waves Correction, Cutoff Distance)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

ViewshedRaster (inFeatureClass As IFeatureClass, inRasterDataset As IRasterDataset2, sOutRaster As String,

observerOffsetField As String, targetOffset As Double, Optional bCurv As Boolean = False, Optional dRefraction As Double =

0.13, Optional dRadio As Double = 1.333333, Optional dCutOff As Double = 0) As IRasterDataset2

Copyright © Ianko Tchoukanski



Cut/Fill Analysis

ToolBox Implementation .NET Implementation

Calculates the cut and fill areas for each polygon from a polygon feature class based on levels for each polygon from a field in

the attribute table and the surface defined by a raster.

Inputs:

A polygon feature class

A raster dataset representing the surface for which the analysis will be performed.

A field from the attribute table containing the level information for each polygon.

Outputs:

An integer raster with values assigned to each zone derived from the input surface raster and the polygons at their

levels

The raster attribute table will contain the following fields

Value - the zone ID

ET_Volume - the volume of the zone in the units of the spatial reference of the input raster.

Negative values of the volume indicate areas where the Z values of the raster surface is above the

level of the polygons - CUT.

Positive values of the volume indicate areas where the Z values of the surface is below the levels of

the polygons. - FILL

ET_Area - the area of the zone in the units of the spatial reference of the input raster

ET_Status - Cut or Fill

Example:

The result of the Cut/Fill function overlaid

with the elevation raster.

red areas indicate FILL

green areas indicate CUT

Notes:

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

The input feature class and raster must have the same projected coordinate system.

If the input polygon feature class has overlapping polygons, the maximum level in the area of overlap will be used.

The areas not covered by polygons will have assigned NODATA values

The polygons or parts of them that are outside of the extents of the input raster will be ignored.

The cells of the input raster that have the same value as the levels of the polygons will have assigned NODATA

values



The result raster can be easily converted to a polygon feature class using the standard ArcGIS Raster To Polygon tool

The attributes can be transferred to the polygons by joining the Raster Attribute Table to the polygons using

GRID_CODE field of the feature class and the Value field of the raster attribute table.

ToolBox implementation

Command line syntax

ETS_GPRasterCutFill <Input Polygons> <Input Raster>  <Out Raster> <Level Field>

Parameters

Expression Explanation

<Input Polygons> A Polygon layer or feature class

<Input Raster> A  Raster dataset or Raster layer

<Out Raster> A String - the full name of the output raster (A raster with the same full name should not exist).

The output raster type depends on the extension of the output file(see Notes above)

<Level Field> A String representing the name of the field which values are going to be used as levels of the

polygons.

Scripting syntax

ETS_GPRasterCutFill (Input Polygons, Input Raster,  Out Raster, Level Field)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

RasterCutFill (inFeatureClass As IFeatureClass, inRasterDataset As IRasterDataset2, sOutRaster As String, sElField As

String) As IRasterDataset2 

Copyright © Ianko Tchoukanski



Raster Volume

ToolBox Implementation .NET Implementation

Calculates the Volume and Area of a raster surface above and below a horizontal reference plane defined by the user specified level.

Inputs:

A raster dataset representing the surface for which the analysis will be performed.

The level (Z value) of the reference plane or Overlay raster which will be used for the volume calculations

Volume Option

Below

Above

Both

Outputs:

An integer raster with values assigned to each zone derived from the input surface raster and the level of the reference plane.

The raster attribute table will contain the following fields

Value - the zone ID

ET_Volume - the volume of the zone in the units of the spatial reference of the input raster.

Negative values of the volume indicate areas where the Z values of the raster surface is above the level of the

polygons - CUT.

Positive values of the volume indicate areas where the Z values of the surface is below the levels of the

polygons. - FILL

ET_Area - the area of the zone in the units of the spatial reference of the input raster

ET_Status - Cut or Fill

Example:

Volume for a dam calculated for three different levels - 1350, 1355 and 1360 meters. The option to calculate the volume only below the

reference plane used. The result rasters converted to polygons. The polygons downstream from the dam wall removed.

Notes:

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats (ESRI GRID,

Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

The input  raster must be in a projected coordinate system.

If an Overlay Raster is used it must have the same spatial reference as the Base Raster

The cells of the input raster that have the same value as the level of the plane will have assigned NODATA values

The result raster can be easily converted to a polygon feature class using the standard ArcGIS Raster To Polygon tool

The attributes can be transferred to the polygons by joining the Raster Attribute Table to the polygons using GRID_CODE field

of the feature class and the Value field of the raster attribute table.

ToolBox implementation

Command line syntax



ETS_GPRasterVolume <Input Raster>  <Out Raster> <Level> <Volume Option>

ETS_GPVolumeBetweenRasters <Input Raster>  <Out Raster> <Second Raster> <Volume Option>

Parameters

Expression Explanation

<Input Raster> A Raster dataset or Raster layer

<Out Raster> A String - the full name of the output raster (A raster with the same full name should not exist). The

output raster type depends on the extension of the output file(see Notes above)

<Second Raster> A Raster Dataset for the overlay raster for volume calculation

<Level> A Double representing the Z level of the reference plane

<Volume Option> A String representing the volume option. Valid values

 - Below

 - Above

 - Below & Above

Scripting syntax

ETS_GPRasterVolume (Input Raster,  Out Raster, Level, Volume Option)

ETS_GPVolumeBetweenRasters (Input Raster,  Out Raster, Second Raster, Volume Option)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

VolumeOfRaster (inRasterDataset As IRasterDataset2, sOutRaster As String, dLevel As Double, sOption As String) As IRasterDataset2

Copyright © Ianko Tchoukanski



Raster Curvature

ToolBox Implementation .NET Implementation

Surface curvature at a point is the curvature of a line formed by the intersection of the surface with a plane with a specific

orientation passing through this point. The value of the curvature is reciprocal of the radius of the curve - the larger the radius,

the smaller the curvature value (a gentle curve has small curvature and a tight curve has large curvature value).  The units of

the curvature are radians per linear unit (the unit of the spatial reference of the raster). 

Because the values of the curvature are typically small, the results of the curvature functions of ET Surface are the actual

curvature multiplied by 100. So the value of the curvature can be described as the change of the orientation resulting from

travelling one hundred linear units along the respective line.

The sign of the curvature is assigned differently by different authors. To keep consistency with ArcGIS the functions of ET

Surface assign the sign as the corresponding functions of ArcGIS. If you want to change the sign you can use the Raster

Calculator to multiply the result by -1. 

The functions of ET Surface calculate the curvatures for each cell of a raster dataset using its immediate neighbors as devised

by Zevenbergen and Thorne (1987).

Plan Curvature is the curvature in a horizontal plane. It can be also described as the curvature of the hypothetical contour line

that passes through a specific cell. The Plan Curvature is positive for cells with concave contours and negative for cells with

convex contours. Plan curvature can be used to differentiate between ridges and valleys.

Profile Curvature is the curvature of the surface in the direction of the steepest slope (in the vertical plane of a flow line). The

Profile Curvature affects the flow velocity of water draining the surface and influences erosion and deposition. In locations with

convex(negative) Profile Curvature the erosion will prevail and in locations with concave (positive) curvature the deposition.



General Curvature (also called Total) is the curvature of the surface itself (not the curvature of a line formed by the intersection

of the surface with a plane). The General Curvature can be positive or convex (indicating peaks), negative or concave

(indicating valleys) or zero (indicating flat surface or a saddle).

Inputs:

Input raster dataset 

Output raster name and format

Output:

A floating point raster.

Example:

DEM (50% transparency) over hillshade



DEM (50% transparency) over Plan Curvature (20% transparency) over hillshade. Pronounced valleys and ridges.

Notes:

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

The input raster must be in a projected coordinate system.

ToolBox implementation

Command line syntax

ETS_GPPlanCurvature <Input Raster>  <Out Raster>

ETS_GPProfileCurvature <Input Raster>  <Out Raster>

ETS_GPGeneralCurvature <Input Raster>  <Out Raster>

Parameters

Expression Explanation

<Input Raster> A Raster dataset or Raster layer

<Out Raster> A String - the full name of the output raster (A raster with the same full name should not exist).

The output raster type depends on the extension of the output file(see Notes above)

Scripting syntax

ETS_GPPlanCurvature (Input Raster,  Out_Raster)

ETS_GPProfileCurvature (Input Raster,  Out_Raster)

ETS_GPGeneralCurvature (Input Raster,  Out_Raster)



See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

PlanCurvature (inRasterDataset As IRasterDataset2, sOutRaster As String) As IRasterDataset2

ProfileCurvature (inRasterDataset As IRasterDataset2, sOutRaster As String) As IRasterDataset2

GeneralCurvature (inRasterDataset As IRasterDataset2, sOutRaster As String) As IRasterDataset2

References:

Zevenbergen, L.W. and Thorne, C.R. (1987) Quantitative analysis of land surface topography. Earth Surface Processes and

Landforms.

Wilson, J.P., and Gallant, J.C. editors, 2000, Terrain Analysis: Principles and Applications (Chichester: Wiley).

Copyright © Ianko Tchoukanski



Euclidean Distance

ToolBox Implementation .NET Implementation

Calculates for each cell of the output raster the Euclidean (straight line) distance to the closest point (source) of the input

feature class. If the input feature class is of Polyline or Polygon type, the vertices will be used as sources.

Inputs:

A point, polyline or polygon dataset (Sources). 

The cell size of the output raster.

Outputs:

A floating point raster. Each cell will have as a value the distance to the closest input point (Source). The extent of the

output is equal to the extent of the input feature class.

Example:

Notes:

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

The input  point feature class must be in a projected coordinate system.

ToolBox implementation

Command line syntax

ETS_GPEUCDistance <Input Features>  <Out Raster> < Cell Size>

Parameters

Expression Explanation

<Input Features> A Point, Polyline or Polygon feature layer or feature class



<Out Raster> A String - the full name of the output raster (A raster with the same full name should not exist).

The output raster type depends on the extension of the output file(see Notes above)

<Cell Size> A Double representing the cell size of the output raster.

Scripting syntax

ETS_GPEUCDistance (Input Features, Out Raster, ID Field, Weight Field, Cell Size)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

EucledeanDistance (inFeatureClass As IFeatureClass, sOutRaster As String, dCellSize As Double) As IRasterDataset2

Copyright © Ianko Tchoukanski



Euclidean Direction

ToolBox Implementation .NET Implementation



Calculates for each cell of the output raster the direction to the closest point (source) of the input feature class. If the input

feature class is of Polyline or Polygon type, the vertices will be used as sources. The result added to ArcMap is categorized in

9 groups.

N - North ( 0 to 22.5 and 337.5 to 360)

NE - North East (22,5 to 67.5)

E - East (67.5 to 112.5)

SE - South East (112.5 to 157.5)

S - South (67.5 to 112.5)

SW - South West (202.5 to 247.5)

W - West (247.5 to 292.5)

NW - North West (292.5 to 337.5)

U - Undefined - Slope = 0

Inputs:

A point, polyline or polygon dataset (Sources). 

The cell size of the output raster.

Outputs:

A floating point raster. Each cell will have as a value the direction in degrees to the closest input point (Source). The

extent of the output is equal to the extent of the input feature class.

Example:

Notes:

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

The input  point feature class must be in a projected coordinate system.

ToolBox implementation

Command line syntax

ETS_GPEUCDirection <Input Features>  <Out Raster> < Cell Size>



Parameters

Expression Explanation

<Input Features> A Point, Polyline or Polygon feature layer or feature class

<Out Raster> A String - the full name of the output raster (A raster with the same full name should not exist).

The output raster type depends on the extension of the output file(see Notes above)

<Cell Size> A Double representing the cell size of the output raster.

Scripting syntax

ETS_GPEUCDirection (Input Features, Out Raster, ID Field, Weight Field, Cell Size)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

EucledeanDirection (inFeatureClass As IFeatureClass, sOutRaster As String, dCellSize As Double) As IRasterDataset2

Copyright © Ianko Tchoukanski



Euclidean Allocation / Voronoi Diagram / Thiessen Polygons

ToolBox Implementation .NET Implementation

Derives the catchment areas of the input features (Sources). Each cell of the output raster will have the value of the closest

(based on straight line distance) Source.

Inputs:

A point, polyline or polygon dataset (Sources). 

The cell size of the output raster.

Source ID field. The values from this field will be allocated to the cells of the output raster.

Outputs:

An integer raster. Each cell will have as a value the ID of the closest input point (Source). The extent of the output is

equal to the extent of the input feature class.

Example:

Notes:

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

The input feature class must be in a projected coordinate system.

The result raster can be easily converted to a polygon feature class using the standard ArcGIS Raster To Polygon tool

The attributes can be transferred to the polygons by joining the Raster Attribute Table to the polygons using

GRID_CODE field of the feature class and the Value field of the raster attribute table.

ToolBox implementation

Command line syntax

ETS_GPVoronoi <Input Features>  <Out Raster> < ID Field> < Cell Size>

Parameters



Expression Explanation

<Input Features> A Point, Polyline or Polygon feature layer or feature class

<Out Raster> A String - the full name of the output raster (A raster with the same full name should not exist).

The output raster type depends on the extension of the output file(see Notes above)

 < ID Field> A String representing the name of the field in the input point feature class to be used as point ID.

<Cell Size> A Double representing the cell size of the output raster.

Scripting syntax

ETS_GPVoronoi (Input Features, Out Raster, ID Field, Weight Field, Cell Size)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

VoronoiAllocation (inFeatureClass As IFeatureClass, sOutRaster As String, sIDField As String, dCellSize As Double) As

IRasterDataset2 

Copyright © Ianko Tchoukanski



Weighted Voronoi Diagram

ToolBox Implementation .NET Implementation

Derives the catchment areas of the input features (Sources) using their spatial location and the weight of each source. The

smaller the weight value of a source is, the greater the influence of the source is.

Inputs:

A point feature class (Sources). 

The cell size of the output raster.

Source ID field. The values from this field will be allocated to the cells of the output raster.

Weight field. The values of this field will be used to define the weight of the sources. Only integer fields can be used

for weight of the sources

Cutoff distance - a cell farther than this distance of a source cannot be allocated to this source - the maximum radius

of influence of a source. 

Algorithm:

All sources start growing at the same time. A source with weight = 1 increases its area every cycle, a source with weight = 2

every second cycle, a source with weight = 10 every tenth cycle and so on. The process finishes when all cells of the output

raster are occupied. If cutoff distance is specified a source will stop increasing its area when it reaches the maximum radius of

influence.

Outputs:

An integer raster. Each cell will have as a value the ID of the closest input point (Source). The extent of the output is

equal to the extent of the input feature class.

Examples:

 

Points labeled with their weights.

No cutoff distance specified

Points labeled with their weights.

Cutoff distance specified

 



Notes:

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

The input feature class must be in a projected coordinate system.

The result raster can be easily converted to a polygon feature class using the standard ArcGIS Raster To Polygon tool

The attributes can be transferred to the polygons by joining the Raster Attribute Table to the polygons using

GRID_CODE field of the feature class and the Value field of the raster attribute table.

ToolBox implementation

Command line syntax

ETS_GPWeightedVoronoi <Input Points> <Out Raster> < ID Field> <Weight Field> < Cell Size> {Cut Off Cost}

Parameters

Expression Explanation

<Input Points> A Point layer feature class

<Out Raster> A String - the full name of the output raster (A raster with the same full name should not exist).

The output raster type depends on the extension of the output file(see Notes above)

 < ID Field> A String representing the name of the field in the input point feature class to be used as point ID.

<Weight Field> A String representing the name of the field in the input point feature class that are going to be

used as weights.

<Cell Size> A Double representing the cell size of the output raster.

{Cut Off Cost} A Double representing the cut off cost - the value of the cells with larger than this cost (distance

x weight) to reach will be set to NODATA

Scripting syntax



ETS_GPWeightedVoronoi (Input Points, Out Raster, ID Field, Weight Field, Cell Size, Cut Off Cost)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

WeightedVoronoiAllocation (inFeatureClass As IFeatureClass, sOutRaster As String, sIDField As String, sWeightField As

String, dCellSize As Double, Optional dCutOff As Double = 0) As IRasterDataset2

Copyright © Ianko Tchoukanski



Cost Allocation - Costs from Source

ToolBox Implementation .NET Implementation

Derives the catchment areas of the input features (Sources) using their spatial location and the weight of each source. The

function allocates the cells of the output raster to the sources based on minimum cost to reach a source from the cell. The cost

is calculated as distance from the cell to the source multiplied by the weight of the source. The smaller the weight value of a

source is, the greater the influence of the source is.

This function produces results similar to the results from the Weighted Voronoi Diagram function. The algorithm is different and

non-integer weights  can be used. Since the Weighted Voronoi Diagram is much faster, the better option is to use it instead of

this function unless you need to have double values for the weights.

The performance of the function depends very much on the difference between the smallest and largest weights. The larger

this difference is, the slower the function will be.

Inputs:

A point feature class(Sources). 

The cell size of the output raster.

Source ID field. The values from this field will be allocated to the cells of the output raster.

Weight field. The values of this field will be used to define the weight of the sources. Any numeric field (integer or

double) can be used as a weight field.

Cutoff cost - cells with larger than this cost (distance x weight) to reach will not be allocated to any source.

Outputs:

An integer raster. Each cell will have as a value the ID of the closest input point (Source). The extent of the output is

equal to the extent of the input feature class.

Examples:

 

Points labeled with their weights.

Integer weights used - the results very 

similar to the results produced by

Weighted Voronoi Diagram . In this case

the use of Weighted Voronoi Diagram

function is recommended.

Points labeled with their weights.

Double values for the weights used. The



difference between the smallest weights 

(indicated on the image) and the largest

ones close to 100 times.

Expect long processing time.

Notes:

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

The input feature class must be in a projected coordinate system.

The result raster can be easily converted to a polygon feature class using the standard ArcGIS Raster To Polygon tool

The attributes can be transferred to the polygons by joining the Raster Attribute Table to the polygons using

GRID_CODE field of the feature class and the Value field of the raster attribute table.

ToolBox implementation

Command line syntax

ETS_GPCostAllocationSource <Input Points>  <Out Raster> < ID Field> <Weight Field> < Cell Size> {Cut Off Cost}

Parameters

Expression Explanation

<Input Points> A Point layer feature class

<Out Raster> A String - the full name of the output raster (A raster with the same full name should not exist).

The output raster type depends on the extension of the output file(see Notes above)

 < ID Field> A String representing the name of the field in the input point feature class to be used as point ID.

<Weight Field> A String representing the name of the field in the input point feature class that are going to be

used as weights.

<Cell Size> A Double representing the cell size of the output raster.

{Cut Off Cost} A Double representing the cut off cost - the value of the cells with larger than this cost (distance

x weight) to reach will be set to NODATA



Scripting syntax

ETS_GPCostAllocationSource (Input Points, Out Raster, ID Field, Weight Field, Cell Size, Cut Off Cost)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

CostAllocationSource (inFeatureClass As IFeatureClass, sOutRaster As String, sIDField As String, sWeightField As String,

dCellSize As Double, Optional dCutOff As Double = 0) As IRasterDataset2

Copyright © Ianko Tchoukanski



Cost Distance - Costs from Source

ToolBox Implementation .NET Implementation



Calculates for each cell of the output raster the least cost to reach one of the sources of the input point feature class. The cost

is calculated as distance from the cell to the source multiplied by the weight of the source. The smaller the weight value of a

source is, the greater the influence of the source is.

The performance of the function depends very much on the difference between the smallest and largest weights. The larger

this difference is, the slower the function will be.

Inputs:

A point feature class (Sources). 

The cell size of the output raster.

Weight field. The values of this field will be used to define the weight of the sources. Any numeric field (integer or

double) can be used as a weight field.

Cutoff cost - the value of the cells with larger than this cost (distance x weight) to reach will be set to NODATA

Outputs:

A floating point raster. Each cell will have as a value the minimum cost to be reached from one of the sources.

Examples:

 

Points (Sources) labeled with their 

weights.

 

Notes:

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

The input feature class must be in a projected coordinate system.

ToolBox implementation

Command line syntax



ETS_GPCostDistanceSource <Input Points>  <Out Raster> <Weight Field> < Cell Size> {Cut Off Cost}

Parameters

Expression Explanation

<Input Points> A Point layer feature class

<Out Raster> A String - the full name of the output raster (A raster with the same full name should not exist).

The output raster type depends on the extension of the output file(see Notes above)

<Weight Field> A String representing the name of the field in the input point feature class that are going to be

used as weights.

<Cell Size> A Double representing the cell size of the output raster.

{Cut Off Cost} A Double representing the cut off cost - the value of the cells with larger than this cost (distance

x weight) to reach will be set to NODATA

Scripting syntax

ETS_GPCostDistanceSource (Input Points, Out Raster, Weight Field, Cell Size, Cut Off Cost)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

CostDistanceSource (inFeatureClass As IFeatureClass, sOutRaster As String, sWeightField As String, dCellSize As Double,

Optional dCutOff As Double = 0) As IRasterDataset2 

Copyright © Ianko Tchoukanski



Cost Allocation - Costs from Raster

ToolBox Implementation .NET Implementation

Derives the catchment areas of the input features (Sources) using their spatial location and the weights from a weight raster.

The function allocates the cells of the output raster to the sources based on minimum cost to reach a source from the cell. The

cost is calculated as distance from the cell to the source multiplied by the weight of the cells of the cost raster. The NODATA

values in the cost raster are considered prohibitive cost.

Inputs:

A point feature class (Sources).

A Cost raster 

Source ID field. The values from this field will be allocated to the cells of the output raster.

Cutoff cost - cells with larger than this cost (distance x weight) to reach will not be allocated to any source.

Outputs:

An integer raster. Each cell will have as a value the ID of the closest input point (Source).

The extent of the output is equal to the extent of the input cost raster.

The cell size of the output is equal to the cell size of the input cost raster.

Examples:

Source points

Cost Raster - Slope raster of digital

terrain model used in the example.

The scenario might be to allocate 

emergency response areas to

centers in a mountain - the larger the 

slope - the lower the accessibility.

 

The resulting allocation raster.



The resulting allocation raster over 

the Hillshade of the terrain.

Illustrates that the boundaries of the 

zones allocated to the Centers are

on very steep terrain (slope is big - 

the cost is high).

Notes:

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

The input feature class and cost raster must be in the same projected coordinate system.

The result raster can be easily converted to a polygon feature class using the standard ArcGIS Raster To Polygon tool

The attributes can be transferred to the polygons by joining the Raster Attribute Table to the polygons using

GRID_CODE field of the feature class and the Value field of the raster attribute table.

ToolBox implementation

Command line syntax

ETS_GPCostAllocationRaster <Input Points> <Cost Raster>  <Out Raster> <ID Field> {Cut Off Cost}

Parameters

Expression Explanation

<Input Points> A Point layer feature class

<Cost Raster> A Raster dataset or Raster layer

<Out Raster> A String - the full name of the output raster (A raster with the same full name should not exist).

The output raster type depends on the extension of the output file(see Notes above)

<ID Field> A String representing the name of the field in the input point feature class to be used as point ID.

{Cut Off Cost} A Double representing the cut off cost - the value of the cells with larger than this cost (distance

x weight) to reach will be set to NODATA



Scripting syntax

ETS_GPCostAllocationRaster (Input Points, Cost Raster, Out Raster, ID Field, Cut Off Cost)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

CostAllocationRaster (inFeatureClass As IFeatureClass, costRasterDataset As IRasterDataset2, sOutRaster As String,

sIDField As String, Optional dCutOff As Double = 0) As IRasterDataset2 

Copyright © Ianko Tchoukanski



Cost Distance - Costs from Raster

ToolBox Implementation .NET Implementation

Calculates for each cell of the output raster the least cost to reach one of the sources of the input point feature class. The cost

is calculated as distance from the cell to the source multiplied by the weight of the cells of the cost raster. The NODATA values

in the cost raster are considered prohibitive cost.

The performance of the function depends very much on the difference between the smallest and largest weights. The larger

this difference is, the slower the function will be.

Inputs:

A point feature class (Sources). 

A Cost raster 

Cutoff cost - the value of the cells with larger than this cost (distance x weight) to reach will be set to NODATA

Outputs:

A floating point raster. Each cell will have as a value the minimum cost to be reached from one of the sources.

The extent of the output is equal to the extent of the input cost raster.

The cell size of the output is equal to the cell size of the input cost raster.

Examples:

 

Source points

Cost Raster - Slope raster of digital 

terrain model used in the example.

The result of the Cost Distance 

function



The result of the Cost Distance 

function over the zones derived with

the Cost Allocation function

Notes:

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

The input feature class and cost raster must be in the same projected coordinate system.

ToolBox implementation

Command line syntax

ETS_GPCostDistanceRaster <Input Points> <Cost Raster>  <Out Raster> {Cut Off Cost}

Parameters

Expression Explanation

<Input Points> A Point layer feature class

<Cost Raster> A Raster dataset or Raster layer

<Out Raster> A String - the full name of the output raster (A raster with the same full name should not exist).

The output raster type depends on the extension of the output file(see Notes above)

{Cut Off Cost} A Double representing the cut off cost - the value of the cells with larger than this cost (distance

x weight) to reach will be set to NODATA

Scripting syntax

ETS_GPCostDistanceRaster (Input Points, Cost Raster, Out Raster, Cut Off Cost)



See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

CostDistanceRaster (inFeatureClass As IFeatureClass, costRasterDataset As IRasterDataset2, sOutRaster As String,

Optional dCutOff As Double = 0) As IRasterDataset2 

Copyright © Ianko Tchoukanski



Clip Raster with Envelope

ToolBox Implementation .NET Implementation

Clips a raster with user defined envelope. The extent can be imported from an existing feature class or raster.

Inputs:

A raster dataset.

Outputs:

A raster with cell values equal to the cell values of the input raster, but only in the extent of the clip envelope.

Notes:

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

If the extents of the clip envelope are outside of the extents of the input raster, the result will be a copy of the input raster.

ToolBox implementation

Command line syntax

ETS_GPClipRasterWithEnvelope <Input Raster> <Out Raster> {Extent from Existing} <Extent>

Parameters

Expression Explanation

<Input Raster> Raster layer or raster dataset

<Out Raster> A String - the full name of the output raster (A raster with the same full name should not exist).

The output raster type depends on the extension of the output file(see Notes above)

{Extent from Existing} A string representing the full path to an existing dataset. The extent of the output raster will have

the extent of this dataset

<Extent> A String representing the extent of the output raster. Example

"0, 0, 500, 250"

Examples:

ETS_GPClipRasterWithEnvelope c:\test\r1.img c:\test\clipped1.img c:\test\extent_source.img # will clip  "r1.img" with

the extents of the existing raster extent_source.img 

ETS_GPClipRasterWithEnvelope c:\test\r1.img c:\test\clipped1.img  # "0, 0, 500, 250"  will clip raster "r1.img" with

envelope with X Min = 0, Y Min = 0, X Max = 500 and Y Max = 250

Scripting syntax

ETS_GPClipRasterWithEnvelope (Input Raster Out Raster, Extent from Existing, Extent)

See the explanations above:

<> - required parameter

{} - optional parameter



.NET implementation

(Go to TOP)

ClipRasterWithEnvelope (inRasterDataset As IRasterDataset2, sOutRaster As String, pExtent As IEnvelope) As

IRasterDataset2 

Copyright © Ianko Tchoukanski



Clip Raster with Polygons

ToolBox Implementation .NET Implementation

Clips a raster dataset with the polygons of the input polygon feature class

Inputs:

A polygon feature class

A raster dataset.

Outputs:

A raster with cell values equal to the cell values of the input raster, but only in the locations overlapping the clip

polygons.

Example:

Input raster and clip polygons

Result raster

Notes:

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

The input feature class and raster must have the same projected coordinate system.

ToolBox implementation

Command line syntax

ETS_GPClipRasterWithPolygons <Input Raster> <Clip Polygons> <Out Raster>

Parameters



Expression Explanation

<Input Raster> A Raster dataset or Raster layer

<Clip Polygons> A Polygon layer or feature class

<Out Raster> A String - the full name of the output raster (A raster with the same full name should not exist).

The output raster type depends on the extension of the output file(see Notes above)

Scripting syntax

ETS_GPClipRasterWithPolygons (Input Raster, Clip Polygons, Out Raster)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

ClipRasterWithPolygons (inRasterDataset As IRasterDataset2, inFeatureClass As IFeatureClass, sOutRaster As String) As

IRasterDataset2 

Copyright © Ianko Tchoukanski



Erase Raster with Polygons

ToolBox Implementation .NET Implementation

Erases a raster dataset with the polygons of the input polygon feature class.

Inputs:

A polygon feature class

A raster dataset representing.

Outputs:

A raster with NoData values for the cells overlapping the erase polygons.

Example:

Input raster and erase 

polygons

Result raster

Notes:

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

The input feature class and raster must have the same projected coordinate system.

ToolBox implementation

Command line syntax

ETS_GPEraseRasterWithPolygons <Input Raster> <Erase Polygons> <Out Raster>

Parameters

Expression Explanation



<Input Raster> A Raster dataset or Raster layer

<Erase Polygons> A Polygon layer or feature class

<Out Raster> A String - the full name of the output raster (A raster with the same full name should not exist).

The output raster type depends on the extension of the output file(see Notes above)

Scripting syntax

ETS_GPEraseRasterWithPolygons (Input Raster, Erase Polygons, Out Raster)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

EraseRasterWithPolygons (inRasterDataset As IRasterDataset2, inFeatureClass As IFeatureClass, sOutRaster As String) As

IRasterDataset2 

Copyright © Ianko Tchoukanski



Smooth Raster

ToolBox Implementation .NET Implementation

Smooth a raster using Gaussian function on 3 x 3 or 5 x 5 neighborhood.

Read more about Gaussian smoothing  here

Inputs:

Input floating point raster dataset 

Output raster name and format

Neighborhood size - 3 x 3 or 5 x 5

Example:

A profile of a raster before and after smoothing

Output:

A floating point raster.

Notes:

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

The input raster must be in a projected coordinate system.

ToolBox implementation

Command line syntax

ETS_GPSmoothRaster <Input Raster>  <Out Raster> <Neighborhood>

Parameters

Expression Explanation

<Input Raster> A Raster dataset or Raster layer

<Out Raster> A String - the full name of the output raster (A raster with the same full name should not exist).

The output raster type depends on the extension of the output file(see Notes above)

http://en.wikipedia.org/wiki/Gaussian_blur


<Neighborhood> A String indicating the neighborhood to be used. Valid inputs "3x3" and "5x5"

Scripting syntax

ETS_GPSmoothRaster (Input Raster,  Out_Raster, Neighborhood)

.NET implementation

(Go to TOP)

SmoothRaster (inRasterDataset As IRasterDataset2, sOutRaster As String, sNeighbourhood As String) As IRasterDataset2

Copyright © Ianko Tchoukanski



Clean Boundaries

ToolBox Implementation .NET Implementation

Cleans the noise around the boundaries between zones of an integer grid. 3 x 3 neighborhood is analyzed for each cell and

the value of the cell is set to the value of the majority of the neighbors.

Inputs:

Input integer raster dataset 

Output raster name and format

Output:

An integer raster.

Example:

Before Clean Boundaries After Clean Boundaries

Notes:

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

The input raster must be in a projected coordinate system.

ToolBox implementation

Command line syntax

ETS_GPCleanBoundaries <Input Raster>  <Out Raster>

Parameters

Expression Explanation

<Input Raster> A Raster dataset or Raster layer



<Out Raster> A String - the full name of the output raster (A raster with the same full name should not exist).

The output raster type depends on the extension of the output file(see Notes above)

Scripting syntax

ETS_GPCleanBoundaries (Input Raster,  Out Raster)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

CleanBoundaries (inRasterDataset As IRasterDataset2, sOutRaster As String) As IRasterDataset2

Copyright © Ianko Tchoukanski



Create Constant Raster

ToolBox Implementation .NET Implementation

Creates a constant raster with user defined data type, cell size and extent. The extent can be imported from an existing feature

class or raster.

Inputs:

Raster data type - integer or floating point. If Integer data type is specified, depending on the constant value specified,

the output might be:

SHORT - signed 16 bit integer (values between -32768 and 32768)

LONG - signed 32 bit integer (values out of the range above)

Output raster name and format

Constant value

Cell Size of the output raster

Extents of the output raster (can be copied from an existing feature class or raster). The default extents are the

current extents of the active view.

Output Spatial Reference. The default spatial reference is the one assigned to the data frame. If the extents are

copied from an existing dataset, the default spatial reference is changed to the projection of this dataset. The selected

spatial reference must be projected coordinate system.

Output:

A raster with constant value for all cells.

Notes:

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

ToolBox implementation

Command line syntax

ETS_GPConstantRaster <Out Raster> {Out Spatial Reference} <Out Type> {Extent from Existing} <Extent><Cell

Size><Raster Value>

Parameters

Expression Explanation

<Out Raster> A String - the full name of the output raster (A raster with the same full name should not exist).

The output raster type depends on the extension of the output file(see Notes above)

{Out Spatial Reference}

The spatial reference of the output raster. The dialog allows the user to select a predefined

spatial reference or import spatial reference from an existing dataset. If used from the Command

Line, the user can just specify the full name of an existing dataset.

<Out Type> A String indicating the type of the output raster. Valid values - "Float" and "Integer"

{Extent from Existing} A string representing the full path to an existing dataset. The extent of the output raster will have

the extent of this dataset



<Extent> A String representing the extent of the output raster. Example

"0, 0, 500, 250"

<Cell Size> A Double representing the cell size

<Raster Value> A Number representing the minimum value of the output raster

Examples:

ETS_GPConstantRaster c:\test\r1.img c:\test\source1.img Float c:\test\source1.img # 10 50.51 - will create a floating

raster "r1.img" with Cell Size = 10 Value = 50.51 in c:\test folder. The spatial reference and the extent will be the same

as the ones of the existing raster source1.img

ETS_GPConstantRaster c:\test\r1.img c:\test\source1.img Integer  # "0, 0, 500, 250" 10 50 - will create an integer

raster "r1.img" with Cell Size = 10 Value = 50 in c:\test folder. The spatial reference will be the same as the one of

source1.img (must exist) and the extents will be defined by the envelope with X Min = 0, Y Min = 0, X Max = 500 and

Y Max = 250

Scripting syntax

ETS_GPConstantRaster (Out Raster, Out Spatial Reference, Out Type, Extent from Existing, Extent, Cell Size, Raster Value,)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

CreateConstantRaster (sOutRaster As String, spatialReference As ISpatialReference2, sDataType As String, pExtent As

IEnvelope, dCellSize As Double, constValue As Single) As IRasterDataset2

Copyright © Ianko Tchoukanski



Create Random Raster

ToolBox Implementation .NET Implementation

Creates an integer raster with random values in user defined range, cell size and extent. The extent can be imported from an

existing feature class or raster.

Inputs:

Output raster name and format

Minimum and Maximum values that indicate the range of random values to be assigned to the cells of the output

raster.

Cell Size of the output raster

Extents of the output raster (can be copied from an existing feature class or raster). The default extents are the

current extents of the active view.

Output Spatial Reference. The default spatial reference is the one assigned to the data frame. If the extents are

copied from an existing dataset, the default spatial reference is changed to the projection of this dataset. The selected

spatial reference must be projected coordinate system.

Output:

An integer raster. Depending on the range specified, the output might be:

SHORT - signed 16 bit integer (values between -32768 and 32768)

LONG - signed 32 bit integer (values out of the range above)

Notes:

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

ToolBox implementation

Command line syntax

ETS_GPRandomRaster <Out Raster> {Out Spatial Reference} {Extent from Existing} <Extent><Cell Size><Min Value> <Max

Value>

Parameters

Expression Explanation

<Out Raster> A String - the full name of the output raster (A raster with the same full name should not exist).

The output raster type depends on the extension of the output file(see Notes above)

{Out Spatial Reference}
The spatial reference of the output raster. The dialog allows the user to select a predefined

spatial reference or import spatial reference from an existing dataset. If used from the Command

Line, the user can just specify the full name of an existing dataset.

{Extent from Existing} A string representing the full path to an existing dataset. The extent of the output raster will have

the extent of this dataset

<Extent> A String representing the extent of the output raster. Example

"0, 0, 500, 250"



<Cell Size> A Double representing the cell size

<Min Value> A Number representing the minimum value of the output raster

<Max Value> A  Number representing the maximum value of the output raster.

Examples:

ETS_GPRandomRaster c:\test\r1.img c:\test\source1.img c:\test\source1.img # 10 50 100 - will create raster "r1.img"

with Cell Size = 10 Min Value = 50 and Max Value = 100 in "c:\test" folder. The spatial reference and the extent will be

the same as the ones of the existing raster source1.img

ETS_GPRandomRaster c:\test\r1.img c:\test\source1.img  # "0, 0, 500, 250" 10 50 100 - will create raster "r1.img" with

Cell Size = 10 Min Value = 50 and Max Value = 100 in "c:\test" folder. The spatial reference will be the same as the

one of source1.img (must exist) and the extents will be defined by the envelope with X Min = 0, Y Min = 0, X Max =

500 and Y Max = 250

Scripting syntax

ETS_GPRandomRaster (Out Raster, Out Spatial Reference, Extent from Existing, Extent, Cell Size, Min Value, Max Value)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

CreateRandomRaster (sOutRaster As String, spatialReference As ISpatialReference2, pExtent As IEnvelope, dCellSize As

Double, minValue As Integer, maxValue As Integer) As IRasterDataset2

Copyright © Ianko Tchoukanski



Change Raster Data Type

ToolBox Implementation .NET Implementation

Changes the data type of the input raster to the output type specified by the user..

Inputs:

Input floating point or integer raster

Output raster name and format.

Output type.

Output:

An raster of the specified data type

The NODATA of the output will be 

The same as the NODATA value of the input if it is within the range of the selected output type

Assigned automatically based on the selected output type if the input NODATA value is out of the

range of the output data type selected.

If the input raster has values that are out of the range of the output data type, these values will be stored as

NODATA. 

Example: If the input raster is of  floating point type and the output type selected is "Byte"

The output raster will have NODATA = 255

The output raster will have values only in the cells where the original raster has values between 0 and 254 and these

values will be rounded to the closest integer. The rest of the cells will have NODATA value.

Notes:

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

ToolBox implementation

Command line syntax

ETS_GPChangeRasterType <Input Raster>  <Out Raster> <Out Type>

Parameters

Expression Explanation

<Input Raster> A Raster dataset or Raster layer

<Out Raster> A String - the full name of the output raster (A raster with the same full name should not exist).

The output raster type depends on the extension of the output file(see Notes above)

<Out Type> A String indicating the slope units. Valid inputs "Byte", "Double", "Long", "Short", "Single"

Scripting syntax

ETS_GPChangeRasterType (Input Raster,  Out Raster, Out Type)

See the explanations above:



<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

ChangeRasterType (inRasterDataset As IRasterDataset2, sOutRaster As String, sType As String) As IRasterDataset2

Copyright © Ianko Tchoukanski



Invert Raster

ToolBox Implementation .NET Implementation

Recalculates the values of the cells of the input raster in such a way that the cell with the lowest value in the input receives the value of the highest cell and vice

versa.

If the raster represents a terrain, the valleys become ridges and the ridges - valleys

Cross sectional profile of the input and output rasters 

Inputs:

Input raster dataset 

Output raster name and format

Output:

A floating point raster.

Example:

Input raster



Inverted raster

Notes:

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats (ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

The input raster must be in a projected coordinate system.

ToolBox implementation

Command line syntax

ETS_GPInvertRaster <Input Raster>  <Out Raster>

Parameters

Expression Explanation

<Input Raster> A Raster dataset or Raster layer

<Out Raster> A String - the full name of the output raster (A raster with the same full name should not exist). The output raster type depends

on the extension of the output file(see Notes above)

Scripting syntax

ETS_GPInvertRaster (Input Raster,  Out_Raster)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

InvertRaster (inRasterDataset As IRasterDataset2, sOutRaster As String) As IRasterDataset2

Copyright © Ianko Tchoukanski



Resample Raster

ToolBox Implementation .NET Implementation

Alters a raster by changing the cell size and/or extent. The extent can be imported from an existing feature class or raster.

Inputs:

A raster dataset.

New cell size value

New extent (optional)

Outputs:

A raster with cell size and extent according to user input.  The resampling method is "Nearest Neighbour" meaning

that the value of the cell will be according to the nearest cell center of the source raster.  The new extent will be

honoured and all values outside of the source raster extent will be assigned to NoData.

Notes:

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

ToolBox implementation

Command line syntax

ETS_GPResampleRaster <Input Raster> <Out Raster><Cell Size> {Extent from Existing} {Extent}

Parameters

Expression Explanation

<Input Raster> Raster layer or raster dataset

<Out Raster> A String - the full name of the output raster (A raster with the same full name should not exist).

The output raster type depends on the extension of the output file(see Notes above)

<Cell Size> A Double representing the cell size

{Extent from Existing} A string representing the full path to an existing dataset. The extent of the output raster will have

the extent of this dataset

{Extent} A String representing the extent of the output raster. Example

"0, 0, 500, 250"

Examples:

ETS_GPResampleRaster c:\test\r1.img c:\test\esampled1.img15 # # will resample  "r1.img" with the same extent and

a new cell size of 15. 

ETS_GPResampleRaster c:\test\r1.img c:\test\resampled1.img  15 #  "0, 0, 500, 250"  will resample raster "r1.img" with

envelope with X Min = 0, Y Min = 0, X Max = 500 and Y Max = 250 and new cell size of 15

Scripting syntax



ETS_GPResampleRaster (Input Raster, Out Raster, Cell Size, Extent from Existing, Extent)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

ResampleRaster (inRasterDataset As IRasterDataset2, sOutRaster As String, dCellsize As Double, Optional pExtent As

IEnvelope = Nothing) As IRasterDataset2 

Copyright © Ianko Tchoukanski



Find NoFlow Areas

ToolBox Implementation .NET Implementation



Finds cells in DEM rasters with undefined flow based on the D8 flow direction algorithm. These cells are either sinks (lower

than all neighboring cells) or in the interior of a flat area. The flat area cells are marked with value of 1 and the sink cells with

the value 2.

Inputs:

A DEM raster dataset.

Outputs:

A raster indicating the cells without flow in the DEM on a background of NoData.  

Notes:

An output value of 1 indicates that the cell belongs to a flat area - there is no lower neighboring cell and the lowest

neighbor has the same elevation.

An output value of 2 indicates a sink - meaning that all neighboring cells are with higher elevation.

See Hydrological functions for more information on the hydrological functionality.

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

An example of the NoFlow Areas output - Flat areas with light blue and Sinks with dark blue.

ToolBox implementation

Command line syntax

ETS_GPNoFlowAreas <Input Raster> <Out Raster>



Parameters

Expression Explanation

<Input Raster> DEM Raster layer or raster dataset

<Out Raster> A String - the full name of the output raster (A raster with the same full name should not exist).

The output raster type depends on the extension of the output file(see Notes above)

Examples:

ETS_GPNoFlowAreas c:\test\dem.img c:\test\NoFlow.img  

Scripting syntax

ETS_GPNoFlowAreas (Input Raster, Out Raster)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

NoFlowAreas (demRasterDataset As IRasterDataset2, sOutRaster As String) As IRasterDataset2

Copyright © Ianko Tchoukanski



Fill Depressions

ToolBox Implementation .NET Implementation

Fills all depressions in a DEM raster and removes flat areas producing a "Depressionless" DEM.

Inputs:

A DEM raster dataset.

Outputs:

A raster representing a Depressionless DEM in which the flow can be determined for every inner cell and all outlets

are at the DEM boundary (or next to NoData areas).

Notes:

The Fill Depressions function is based on the algorithm proposed by Planchon and Darboux (2001).

See Hydrological functions for more information on the hydrological functionality.

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

ToolBox implementation

Command line syntax

ETS_GPFillDepressions <Input DEM Raster> <Out Raster>

Parameters

Expression Explanation

<Input DEM Raster> Raster layer or raster dataset

<Out Raster> A String - the full name of the output raster (A raster with the same full name should not exist).

The output raster type depends on the extension of the output file(see Notes above)

Examples:

ETS_GPFillDepressions c:\test\dem.img c:\test\filldem.img  

Scripting syntax

ETS_GPFillDepressions (Input DEM Raster, Out Raster)

See the explanations above:

<> - required parameter

{} - optional parameter

 

Reference:

Planchon, O. and F. Darboux, (2001), "A fast, simple and versatile algorithm to fill the depressions of digital

elevation models", Catena, 46: 159-176. 



.NET implementation

(Go to TOP)

FillDepressions (demRasterDataset As IRasterDataset2, sOutRaster As String) As IRasterDataset2

Copyright © Ianko Tchoukanski



Flow Direction D8

ToolBox Implementation .NET Implementation

Generates a Flow Direction raster in which each cells represents the direction of flow for this cell in the DEM using the D8

method. 

Inputs:

A DEM raster dataset.

Outputs:

An integer raster representing the Flow Direction according to the D8 (Deterministic 8) method.  The 8 flow directions

are coded with values 1,2,4,8,16,32,64,128 and value of 0 indicates an outlet. The values are coded using the

following convention:

For example if the steepest descent of a cell is to the left, its Flow direction will be coded as 1, if it is to upper right, it will be

coded as 32. The steepest descent is calculated by dividing the elevation difference by the distance between the cell centers.

Notes:

The Flow direction values are determined based on the steepest downslope neighbor for each cell.

If a cell is lower than its 8 neighbors it is assigned a value of 0 meaning it is an outlet or sink.

If a cell has the same slope in more than one direction, the first encountered direction is assigned.

See Hydrological functions for more information on the hydrological functionality.

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

An example of Flow Direction D8 output.



ToolBox implementation

Command line syntax

ETS_GPFlowDirectionD8 <Input DEM Raster> <Out Flow Direction Raster>

Parameters

Expression Explanation

<Input DEM Raster> DEM raster layer or raster dataset

<Out Flow Direction

Raster>

A String - the full name of the output raster (A raster with the same full name should not exist).

The output raster type depends on the extension of the output file(see Notes above)

Examples:

ETS_GPFlowDirectionD8 c:\test\dem.img c:\test\flowdir8.img

Scripting syntax

ETS_GPFlowDirectionD8 (Input DEM Raster, Out Flow Direction Raster)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

FlowDirectionD8 (demRasterDataset As IRasterDataset2, sOutRaster As String) As IRasterDataset2

Copyright © Ianko Tchoukanski



Flow Direction D-infinity

ToolBox Implementation .NET Implementation

Generates a Flow Direction raster in which each cells represents the direction of flow for this cell in the DEM using the

D-infinity method.

Inputs:

A DEM raster dataset.

Outputs:

A Floating raster representing the Flow Direction according to the D-infinity (Deterministic Infinity) method. 

Notes:

The D-infinity method was suggested by Tarboton (1997). In it Flow Direction is defined as the angle of the steepest

descent determined by analysis of 8 triangular facets formed by the 3x3 cell neighborhood.

The flow direction values are in Decimal Degrees from 0 to 360.0. The value of 0.0 indicates an outlet and all other

values represent the direction of flow starting from North in clockwise direction.

For example a value of 90 indicates flow to the East and a value of 225 - flow to South West.

The D-infinity method allows flow divergence - the flow from a cell will either go to one or two of the neighboring cells. 

This is a better representation of water flow on divergent slopes. 

See Hydrological functions for more information on the hydrological functionality.

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

An example of Flow Direction D-infinity output.



ToolBox implementation

Command line syntax

ETS_GPFlowDirectionDinf <Input DEM Raster> <Out Flow Direction Raster>

Parameters

Expression Explanation

<Input DEM Raster> DEM raster layer or raster dataset

<Out Flow Direction

Raster>

A String - the full name of the output raster (A raster with the same full name should not exist).

The output raster type depends on the extension of the output file(see Notes above)

Examples:

ETS_GPFlowDirectionDinf c:\test\dem.img c:\test\flowdirInf.img  will create  "flowdirInf.img".

Scripting syntax

ETS_GPFlowDirectionDinf (Input DEM Raster, Out  Flow Direction Raster)

See the explanations above:

<> - required parameter

{} - optional parameter

 

.NET implementation

(Go to TOP)

FlowDirectionDinf (demRasterDataset As IRasterDataset2, sOutRaster As String) As IRasterDataset2



Reference:

Tarboton, D. G., (1997), "A New Method for the Determination of Flow Directions and Contributing Areas in Grid Digital

Elevation Models", Water Resources Research, 33(2): 309-319

Copyright © Ianko Tchoukanski



Flow Accumulation D8

ToolBox Implementation .NET Implementation

Generates a Flow Accumulation raster using the Deterministic 8 (D8) flow direction model.

Inputs:

A D8 Flow Direction raster dataset.

Outputs:

A Flow Accumulation raster .

Notes:

The value for each cell in the Flow Accumulation raster is the total number of cells which flow into it including the cell

itself.  So for a cell with no inflowing cells the value will be 1.

The value in the Flow Accumulation raster represents the number of upstream cells from which the water flowing

downstream will pass through the current cell.

The actual contributing area for the cells can be determined by multiplying the accumulation value by the area

represented by a cell.

Thus for a raster with cell size 1 x 1 meter the values are directly square meters.  For a cell size of 10 x 10 meters, the

accumulated value must be multiplied by 100 to obtain the contributing area.

Cells with a high value in the Flow Accumulation raster indicate high concentration of water and can be used for

identification of streams.

See Hydrological functions for more information on the hydrological functionality.

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

An example of Flow Accumulation D8 result.



ToolBox implementation

Command line syntax

ETS_GPFlowAccumulationD8 <Input Flow Direction Raster> <Out Flow Accumulation Raster>

Parameters

Expression Explanation

<Input Flow Direction

Raster>

A D8 Flow Direction Raster layer or Raster dataset

<Out  Flow Accumulation

Raster>

A String - the full name of the output raster (A raster with the same full name should not exist).

The output raster type depends on the extension of the output file(see Notes above)

Examples:

ETS_GPFlowAccumulationD8 c:\test\flowDirD8.img c:\test\flowAccD8.img  

Scripting syntax

ETS_GPFlowAccumulationD8 (Input Flow Direction Raster, Out  Flow Accumulation Raster)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

FlowAccumulationD8 (flowDirRasterDataset As IRasterDataset2, sOutRaster As String) As IRasterDataset2

Copyright © Ianko Tchoukanski



Flow Accumulation D-infinity

ToolBox Implementation .NET Implementation

Generates a Flow Accumulation raster using the D-infinity algorithm (Tarboton, 1997).

Inputs:

A D-infinity Flow Direction raster dataset.

Stream Initiation Threshold value (optional)

A D8 Flow Direction raster dataset (optional)

Outputs:

A Flow Accumulation raster .

Notes:

The value for each cell in the Flow Accumulation raster is the total number of cells which flow into it including the cell

itself. So for a cell with no inflowing cells the value will be 1.

The D-infinity flow algorithm allows flow divergence. This means that the value accumulated in a cell can be directed

to one or two neighboring cells depending on the flow direction angle. This is a better representation of flow on

divergent slopes.

By applying a Threshold value to the Flow Accumulation raster we can determine the cells which form a Stream

network.  All cells with Flow Accumulation value above the threshold are considered to be part of a stream.

The flow direction after Stream Initiation is better represented by the D8 single flow algorithm.  The function allows for

the specification of a Stream Initiation Threshold value and the relevant D8 Flow Direction raster to be used after the

threshold accumulation value is reached.

See Hydrological functions for more information on the hydrological functionality.

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

An example of Flow Accumulation D-infinity result (above) and Flow Accumulation D8 (below).

Note the dispersion of flow in the D-infinity result compared with the concentrated flow in D8.



 

ToolBox implementation

Command line syntax



ETS_GPFlowAccumulationDinf <Input D-inf Flow Direction Raster> <Out Flow Accumulation Raster> {Stream Initiation

Threshold} {Input D8 Flow Direction Raster}

Parameters

Expression Explanation

<Input D-inf Flow Direction

Raster>

D-infinity Flow Direction raster layer or raster dataset

<Out Flow Accumulation

Raster>

A String - the full name of the output raster (A raster with the same full name should not exist).

The output raster type depends on the extension of the output file(see Notes above)

{Stream Initiation 

Threshold}

A Double representing the Threshold value

{Input D8 Flow Direction 

Raster}

D8 Flow Direction raster layer or raster dataset

Examples:

ETS_GPFlowAccumulationDinf c:\test\FlowDirDinf.img c:\test\FlowAcc.img  - all accumulation will be done using the

multiple flow D-infinity method

ETS_GPFlowAccumulationDinf c:\test\FlowDirDinf.img c:\test\FlowAcc.img  1000 c:\test\FlowDirD8.img - accumulation 

below value of 1000 will be done using the D-infinity method, above 1000 the D8 Flow Directions will be used

Scripting syntax

ETS_GPFlowAccumulationDinf (Input D-inf Flow Direction Raster, Out Flow Accumulation Raster, Stream Initiation Threshold,

Input D8 Flow Direction Raster)

See the explanations above:

<> - required parameter

{} - optional parameter

 

Reference:

Tarboton, D. G., (1997), "A New Method for the Determination of Flow Directions and Contributing Areas in Grid Digital

Elevation Models", Water Resources Research, 33(2): 309-319

.NET implementation

(Go to TOP)

FlowAccumulationDinf (dinfFlowDirRaster As IRasterDataset2, sOutRaster As String, Optional iThreshhold As Integer = 0,

Optional d8FlowDirRaster As IRasterDataset2 = Nothing) As IRasterDataset2 

Copyright © Ianko Tchoukanski



Extract Outlets

ToolBox Implementation .NET Implementation

Extract Outlets (pour points) from a Flow Direction raster (D8 or D-infinity).

Inputs:

A Flow Direction raster dataset (D8 or D-infinity).

Outputs:

A Point feature class representing the points at which the flow stops or leaves the extent of the DEM.

Each outlet point is assigned an ID recorded in the "ET_Outlet" field of the attribute table

Notes:

When the Flow Direction raster was created from a depressionless DEM, the outlet points should be at the border of 

the raster or next to areas of NoData.

The extracted outlet points can be edited and used later for the delineation of Watersheds.

See Hydrological functions for more information on the hydrological functionality.

An example of Extract Outlets output (the red points).  For some of the extracted points the Flow Accumulation will be too low

to delineate a stream.

ToolBox implementation

Command line syntax

ETS_GPExtractOutlets <Input Flow Direction Raster> <Out Outlet Feature Class>

Parameters



Expression Explanation

<Input Flow Direction Raster> Flow Direction Raster layer or raster dataset

<Out Outlet Feature Class> A String - the full name of the output feature class.

Examples:

ETS_GPExtractOutlets c:\test\FlowDirection.img c:\test\Outlets.shp

Scripting syntax

ETS_GPExtractOutlets (Input Flow Direction  Raster, Out Outlet Feature Class)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

ExtractOutlets (flowDirRasterDataset As IRasterDataset2, sOutFName As String) As IFeatureClass

Copyright © Ianko Tchoukanski



Create Stream Raster

ToolBox Implementation .NET Implementation



Delineates streams from a Flow Accumulation raster by applying a Stream Initiation threshold.

Inputs:

A Flow Accumulation raster dataset.

Stream Initiation Threshold - a double

Outputs:

A Stream raster representing the Stream Network.

Notes:

The Stream Initiation Threshold represents the minimum contributing area (number of cells) required to initiate and maintain a

Stream.

 The determination of the threshold value will depend on several factors including the type of the terrain, climate, soils and the

DEM resolution.

Reviewing existing data and maps for the area and experimentation with different values are helpful for the determination of the

threshold value.  Lower values will result in denser  Stream Network.

The Stream Network in the output raster is represented with the value of 1 on a background of NoData.

If the input Flow Accumulation raster was created using the D8 method, the resulting Stream Network will be properly connected

because a cell can only flow to one of its neighbors and the increase in the accumulation value is guaranteed.

If the input Flow Accumulation raster was created using the D-infinity method it is possible to obtain unconnected streams in the

output due to flow divergence. To avoid this when creating a Flow Accumulation raster with the D-infinity model, please  use the

optional Stream Initiation Threshold above which the accumulation will be determined using the D8 Flow Direction method. In

this case a D8 Flow Direction raster is also required.

See Hydrological functions for more information on the hydrological functionality.

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats (ESRI GRID,

Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

An example of Create Stream Raster output.  The left image shows the output at Threshold value of 1000 cells and the right at Threshold

value of 100 cells.

ToolBox implementation

Command line syntax

ETS_GPCreateStreamRaster <Input Raster> <Out Stream Raster> <Stream Initiation Threshold>



Parameters

Expression Explanation

<Input Raster> A Flow Accumulation raster layer or raster dataset

<Out Stream Raster> A String - the full name of the output raster (A raster with the same full name should not exist). The

output raster type depends on the extension of the output file(see Notes above)

<Stream Initiation 

Threshold>

A Double representing the number of Flow Accumulation cells at which a Stream is initiated.

Examples:

ETS_GPCreateStreamRaster c:\test\FlowAcc.img c:\test\Stream.img 1000  

Scripting syntax

ETS_GPCreateStreamRaster (Input Raster, Out Stream Raster, Stream Initiation Threshold)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

CreateStreamRaster (flowAccumRaster As IRasterDataset2, sOutRaster As String, dThreshhold As Double) As IRasterDataset2

Copyright © Ianko Tchoukanski



Strahler Stream Order

ToolBox Implementation .NET Implementation

Assigns an order to each stream segment according to the system proposed by Strahler (1952). The order of the stream

section starting at the stream head is assigned to 1. The order increases by 1 only when two sections of the same order

intersect.  For example if two sections of order 1 intersect, the following section will be assigned an order of 2.  When two

sections of different order intersect, the following section preserves the higher order.

Inputs:

A Stream raster dataset.

A D8 Flow Direction raster dataset

Outputs:

A Strahler Stream Order raster with cell values indicating the assigned order for each stream section 

Notes:

The input Stream raster should be represented as values greater than or equal to one on a background of NoData

The input Stream raster and the input D8 Flow Direction raster must have the same cell size and extent. In fact they

should originate from the same DEM raster.

See Hydrological functions for more information on the hydrological functionality.

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

An example of Strahler Stream Order result.



ToolBox implementation

Command line syntax

ETS_GPStrahlerStreamOrder <Input Stream Raster> <Input D8 Flow Direction Raster> <Out Strahler Stream Order Raster>

Parameters

Expression Explanation

<Input Stream Raster> A Stream raster layer or raster dataset

<Input D8 Flow Direction

Raster>

A D8 Flow Direction raster layer or raster dataset.

<Out Strahler Stream Order

Raster>

A String - the full name of the output raster (A raster with the same full name should not

exist). The output raster type depends on the extension of the output file(see Notes above)

Examples:

ETS_GPStrahlerStreamOrder c:\test\Stream.img c:\test\D8FlowDir.img c:\test\Strahler.img  

Scripting syntax

ETS_GPStrahlerStreamOrder (Input Stream Raster, Input D8 Flow Direction Raster, Out Strahler Stream Order Raster)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)



StrahlerStreamOrder (streamRaster As IRasterDataset2, flowDirD8Raster As IRasterDataset2, sOutRaster As String) As

IRasterDataset2 

Copyright © Ianko Tchoukanski



Stream Link

ToolBox Implementation .NET Implementation



Assigns unique values to sections of streams between junctions. A Link is each section of Stream between two junctions, the

stream head and a junction or a junction and the outlet.

Inputs:

A Stream raster dataset.

A D8 Flow Direction raster dataset

Outputs:

A Stream Link raster. A unique integer value is assigned to each Stream section between junctions.

Notes:

The input Stream raster should be represented as values greater than or equal to one on a background of NoData

The input Stream raster and the input D8 Flow Direction raster must have the same cell size and extent. In fact they

should originate from the same DEM raster.

See Hydrological functions for more information on the hydrological functionality.

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

An example of Stream Link output.

ToolBox implementation

Command line syntax

ETS_GPStreamLink <Input Stream Raster> <Input D8 Flow Direction Raster> <Out Stream Link Raster>



Parameters

Expression Explanation

<Input Stream Raster> Stream raster layer or raster dataset

<Input D8 Flow 

Direction Raster>

D8 Flow Direction raster layer or raster dataset

<Out Stream Link

Raster>

A String - the full name of the output raster (A raster with the same full name should not exist).

The output raster type depends on the extension of the output file(see Notes above)

Examples:

ETS_GPStreamLink c:\test\Stream.img c:\test\FlowDir.img c:\test\StreamLink.img  

Scripting syntax

ETS_GPStreamLink (Input Stream Raster, Input Flow Direction Raster, Out Stream Link Raster)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

StreamLink (streamRaster As IRasterDataset2, flowDirD8Raster As IRasterDataset2, sOutRaster As String) As

IRasterDataset2 

Copyright © Ianko Tchoukanski



Stream Raster to Features

ToolBox Implementation .NET Implementation

Converts a Stream raster to a polyline feature class. Optionally creates a point feature class with the Nodes of the stream

network.

Inputs:

A Stream raster dataset.

A D8 Flow Direction raster dataset

Outputs:

A Polyline feature class. Each polyline represents a section of the Stream network between two junctions or from a

junction to an outlet or from stream head to junction.

Optional Point feature class. Each point represents a node of the Stream network - a junction or an outlet or a stream

head.

Notes:

The Stream feature class will have attributes for the unique Stream Link ID, Start Node and End Node corresponding

with the Node ID from the Node Point feature class.

The Node feature class will have attributs for the Unique Node ID.

The Stream polylines will have a direction pointing downstream.

The input Stream raster and the input D8 Flow Direction raster must have the same cell size and extent. In fact they

should originate from the same DEM raster.

See Hydrological functions for more information on the hydrological functionality.

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

An example of Stream Raster to Features output - Streams and Nodes.



ToolBox implementation

Command line syntax

ETS_GPStreamRasterToFeatures <Input Stream Raster> <Input D8 Flow Direction Raster> <Out Stream Feature Class>

{Out Node Feature Class}

Parameters

Expression Explanation

<Input Stream Raster> Stream raster layer or raster dataset

<Input D8 Flow Direction Raster> D8 Flow Direction raster layer or raster dataset

<Out Stream Feature Class> A String - the full name of the output Stream feature class.

{Out Node Feature Class} A String - the full name of the output Node class.

Examples:

ETS_GPStreamRasterToFeatures c:\test\Stream.img c:\test\FlowDir.img c:\test\Streams.shp

ETS_GPStreamRasterToFeatures c:\test\Stream.img c:\test\FlowDir.img c:\test\Streams.shp c:\test\Nodes.shp

Scripting syntax

ETS_GPStreamRasterToFeatures (Input Stream Raster, Input Flow Direction Raster, Out Streams Feature Class, Out Nodes

Feature Class)

See the explanations above:

<> - required parameter

{} - optional parameter



.NET implementation

(Go to TOP)

StreamRasterToFeatures (streamRaster As IRasterDataset2, flowDirD8Raster As IRasterDataset2, sOutStream As String,

Optional sOutNode As String = "") As IFeatureClass 

Copyright © Ianko Tchoukanski



Snap Pour Points

ToolBox Implementation .NET Implementation

Snaps Pour points (Outlets) to raster cells within a specified distance depending on the selected Snap option.

Inputs:

A Pour Points feature layer.

Snap Raster dataset - the raster type depends on the selected Snap Option

Snap Option - three possible values:

Snap to nearest Stream

Snap to lowest Elevation

Snap to highest Flow Accumulation

Snap Distance - input points will be moved if a snap value is found within this distance in Map units.

Outputs:

A  Point feature class with the moved points.  A new field is added "ET_Snap" and will contain the distance with which

the point was moved in Map units.

Notes:

If the Snap Option is "Nearest Stream" a point will be moved to the center of the nearest cell in the Stream raster with

value above 0 within the Snap Distance. If a point is within a Stream cell, it will not be moved.

If the Snap Option is "Lowest Elevation" a point will be moved to the cell with the lowest value in the Elevation raster

within the Snap Distance.

If the Snap Option is "Highest Accumulation" a point will be moved to the cell with the highest value in the Flow

Accumulation raster within the Snap Distance.

See Hydrological functions for more information on the hydrological functionality.

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

An example of Snap Pour Points using the Stream option - initial points in green and after snapping in red.



ToolBox implementation

Command line syntax

ETS_GPSnapPourPoints <Input Pour Points Feature Class> <Input Snap Raster> <Out Feature Class> <Snap Option>

<Snap Distance>

Parameters

Expression Explanation

<Input Pour Points

Feature Class>

A Pour Points feature layer.

<Input Snap Raster> A Snap Raster dataset depending on the selected Snap Option

<Out Feature Class> A String - the full name of the output Pour Points feature class.

<Snap Option> A String - possible values are "stream", "elevation" and "accumulation"

<Snap Distance> A Double representing the Snap Distance in Map units

Examples:

ETS_GPSnapPourPoints c:\test\Outlet.shp c:\test\Stream.img c:\test\SnapOutlet.shp "stream" 100

ETS_GPSnapPourPoints c:\test\Outlet.shp c:\test\DEM.img c:\test\SnapOutlet.shp "elevation" 200

Scripting syntax

ETS_GPSnapPourPoints (Input Pour Points Feature Class, Input Snap Raster, Out Feature Class, Snap Option, Snap

Distance)

See the explanations above:



<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

SnapPourPoints (inFeatureClass As IFeatureClass, snapRasterDataset As IRasterDataset2, sOutFeature As String,

snapOption As String, dDistance As Double) As IFeatureClass 

Copyright © Ianko Tchoukanski



Watershed

ToolBox Implementation .NET Implementation

Delineates Watersheds (Drainage basins)  from a D8 Flow Direction raster for a set of Outlet points.

Inputs:

A D8 Flow Direction raster dataset.

An optional Outlet Point Feature class.

A Field in the Outlet feature class with integer IDs to be assigned to Watersheds.

Outputs:

A Watershed Raster representing the contributing areas for each outlet (integer raster).

Notes:

Watersheds are delineated from the D8 Flow Direction raster. An optional Outlets feature class can be specified as

input. In this case Watersheds are delineated for the Outlet points. An ID is assigned to each Watershed from a field

in the Outlets feature class.

If no Outlet points are specified, all Outlets for the DEM are determined (the points at which flow leaves the DEM) and

Watersheds are delineated for them. In this case the Watersheds are assigned unique generated values starting from

1.

If Outlet points are specified it is recommended to ensure that they are within cells with sufficient flow to delineate a

reasonable Watershed.  Otherwise it is possible only a few cells (or even just one) to be delineated.

The Snap Pour Points function can be used to move the Outlet points to cells with higher flow within a specified

distance based on the values of a reference raster.

See Hydrological functions for more information on the hydrological functionality.

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

An example of Watershed output using Outlet points .



ToolBox implementation

Command line syntax

ETS_GPWatershed <Input D8 Flow Direction Raster> <Out Watershed Raster> {Input Outlet Feature Class} {Outlet ID Field}

Parameters

Expression Explanation

<Input D8 Flow

Direction Raster>

A D8 Flow Direction raster layer or raster dataset

<Out Watershed

Raster>

A String - the full name of the output raster (A raster with the same full name should not exist).

The output raster type depends on the extension of the output file(see Notes above)

{Input Outlet Feature 

Class}

A Point Feature Class with the Outlet points.

{Outlet ID Field} A String - the name of an Integer Field in the Outlet Point Feature Class with values to be

assigned to the delineated Watersheds.  Field is required if an Outlet Feature Class is specified.



Examples:

ETS_GPWatershed c:\test\FlowDir.img c:\test\Watershed.img

ETS_GPWatershed c:\test\FlowDir.img c:\test\Watershed.img c:\test\Outlets.shp OutletID

Scripting syntax

ETS_GPWatershed (Input D8 Flow Direction Raster, Out Watershed Raster, Input Outlets Feature Class, Input Outlet ID Field)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

Watershed (flowDirD8Raster As IRasterDataset2, sOutRaster As String, Optional outletFC As IFeatureClass = Nothing,

Optional sOutletField As String = "") As IRasterDataset2 

Copyright © Ianko Tchoukanski



Streams and Watershed from DEM

ToolBox Implementation .NET Implementation

Creates Stream features and optionally Nodes features and Watershed raster from a DEM.

Inputs:

A DEM raster dataset.

Flow Direction Method - D8 or D-infinity 

Stream Initiation Threshold

Outputs:

A Polyline feature class. Each polyline represents a section of the Stream network between two junctions or from a

junction to an outlet or from stream head to junction.

Optional Point feature class. Each point represents a node of the Stream network - a junction or an outlet or a stream

head.

Optional Watershed Raster representing the contributing areas for each outlet (integer raster).

Notes:

This function provides a straightforward way to create a Stream Network features and optionally Node features and

Watershed raster from DEM.  It calculates in the background the necessary Flow Direction and Flow Accumulation

rasters depending on the selection of the Flow Direction method.  The Watershed Raster represents Watersheds for

all Outlet points determined from the Flow Direction raster and Watershed IDs are automatically generated.

See Hydrological functions for more information on the hydrological functionality.

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

An example of Streams And Watershed output - Streams and Nodes Features and Watershed raster.



ToolBox implementation

Command line syntax

ETS_GPStreamsAndWatershed <Input DEM Raster> <Flow Direction Method> <Stream Initiation Threshold> <Out Streams

Feature Class> {Out Nodes Feature Class} {Out Watershed Raster}

Parameters

Expression Explanation

<Input DEM Raster> A DEM raster layer or raster dataset

<Flow Direction Method> A String - possible values are "d8" and "d-inf"

<Stream Initiation Threshold> A Double representing the number of Flow Accumulation cells at which a Stream

is initiated.

<Out Streams Feature Class> A String - the full name of the output Streams feature class.

{Out Node Feature Class} A String - the full name of the output Node class.

{Out Watershed Raster] A String - the full name of the output Watershed raster (A raster with the same

full name should not exist). The output raster type depends on the extension of

the output file(see Notes above)

Examples:

ETS_GPStreamsAndWatershed c:\test\DEM.img "d8" 500 c:\test\Streams.shp

ETS_GPStreamsAndWatershed c:\test\DEM.img "d-inf" 1000 c:\test\Streams.shp c:\test\Nodes.shp

c:\test\Watershed.img



Scripting syntax

ETS_GPStreamsAndWatershed (Input DEM Raster, Flow Direction Method, Stream Initiation Threshold, Out Streams Feature

Class, Out Nodes Feature Class, Out Watershed Raster)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

StreamsAndWatershed (demRaster As IRasterDataset2, sMethod As String, dThreshhold As Double, sOutStream As String,

Optional sOutNode As String = "", _ Optional sWatershedRaster As String = "") As IFeatureClass

Copyright © Ianko Tchoukanski



Raster Calculator

ToolBox Implementation .NET Implementation

The Raster Calculator enables the user to perform complex mathematical calculation on rasters. The user can build expressions using large variety of arithmetic,

logical, trigonometric, etc. functions provided. Up to 4 rasters can be used in a single expression. The expressions are evaluated by the Raster Calculator on the fly

and the user is provided with the status of the formula as he/her builds it.

Inputs:

Rasters - up to 4 rasters can be used. If the Raster Calculator is used from the GUI, the rasters are selected from the raster layers loaded in ArcMap. In the

ToolBox implementation the input can be a raster layer or raster dataset. The 4 rasters are called Raster A, Raster B, Raster C and Raster D. Raster A is

required, the other rasters are optional.

Expression - the formula to be used for the calculation to be performed. For shortness the rasters should be entered with their letters in the expression - A

for Raster A, B for Raster B, etc. All the functions available can be typed in the expression box or selected from the calculator buttons provided. The

functions are not case sensitive - SIN, Sin and sin will be accepted as correct entries. Note that the operator for EQUAL is "==" and NOT "=" (which is

operator for assignment). The syntax of all functions is discussed below.

Output:

If the Raster Calculator is used from the GUI, the raster dataset created when an expression is executed is a temp raster and is stored in the temp folder of

ET Surface. If you want to save it as a permanent raster, use the Export Data tool.

 If the ToolBox implementation is used, the user is asked for an output name and location and the raster dataset created is permanent.

The output raster dataset will

Be FLOAT type

Have the cell size of the Raster A (if any of the other rasters used have a different cell size, it will be resampled)

The extent  will be calculated as the intersection of the extents of the input rasters.

Functions and operators:

Arithmetic

FLOOR - Returns the largest integer less than or equal to a number. FLOOR (3.66) = 3

CEILING - Returns the smallest integer greater than or equal to a number. CEILING (3.15)= 4

ROUND - Rounds a number to the nearest integer. ROUND (3.66) = 4,  ROUND (3.15) = 3

ABS - Returns the absolute value of a number. ABS(-14) = 14

SQRT - Returns the square root of a number. SQRT(4) = 2

SQR - Returns the square of a number. SQR(2) = 4

Trigonometric

Pi - adds constant Pi to the expression 

RAD - converts an angle in degrees to an angle in radians.

SIN -  Returns the sine of an angle. The argument should be in radians. SIN(Pi/6) = 0.5; SIN(RAD(30)) = 0.5



COS -  Returns the cosine of an angle. The argument should be in radians. SIN(Pi/3) = 0.5, COS(RAD(60)) = 0.5

TAN - Returns the tangent of an angle. The argument should be in radians. TAN(RAD(45)) = 1

ASIN - Returns the angle (in radians) whose sine is the specified number. To convert the result to degrees multiply with 180/pi -  ASIN(0.5)*180/Pi =

30 

ASIN - Returns the angle (in radians) whose cosine is the specified number.

ATAN - Returns the angle (in radians) whose tangent is the specified number.

Logarithmic

LOG - Returns the logarithm of a number.

LOG10 - Returns the base 10 logarithm of a specified number.

LN -  Returns the natural logarithm of a number.

EXP - Returns e raised to the specified power.

Statistics

SUM - Returns the sum of the arguments - SUM(1,2,3,4,5) = 15

MIN - Returns the minimum of the arguments - MIN(1,2,3,4,5) = 1

MAX - Returns the maximum of the arguments - MAX(1,2,3,4,5) = 5

AVG - Returns the average of the arguments - AVG(1,2,3,4,5) = 3

Logical

IF - logical if. The syntax is IF(expression, true result, false result) - IF(2>1,100,200) = 100

!= - Not equal -  IF(2 != 1,100,200) = 100

== - equal  -  IF(2 == 1,100,200) = 200

AND - logical and -   IF(2 > 1 AND 3 == 4,100,200) = 200

OR - logical or -  IF(2 > 1 OR 3 == 4,100,200) = 100

XOR - logical xor -  IF(2 > 1 XOR 3 == 4,100,200) = 100

NOT - logical not - IF(NOT(2 == 1),100,200) = 100

Priority of the operators

Priority Operators

1 AND, OR, XOR

2 ==, !=, <=, >=, <, >

3 +, -

4 *, /

5 ^

NoData Values

The NoData value of the output raster will be equal to the NoData value of raster A

If any of the rasters participating in an expression have NoData value in certain location, the output will have NoData value at this location

The user can use NoData in an expression to set portions of the output raster to NoData. Example: IF(A<1500,NoData,A) - this expression will create a

raster in which all cells with values  less than 1500 will be assigned to NoData, the rest of the cells will have the values of the input raster A.

To replace the NoData values of a raster with valid values use the Replace NoData function.

ToolBox implementation

Command line syntax

ETS_GPRasterCalculator  <Raster_A> {Raster_B} {Raster_C} {Raster_D} <out_raster>,<Expression>

Parameters

Expression Explanation

<Raster_A> A Raster dataset or Raster layer

{Raster_B} A Raster dataset or Raster layer

{Raster_C} A Raster dataset or Raster layer

{Raster_D} A Raster dataset or Raster layer

<out_raster> A String - the full name of the output raster (Araster with the same full name should not exist)

 <Expression> A String - the expression to be executed

Example: ETS_GPRasterCalculator  elev1 # # # c:\test\output.img IF(A > 1300, NoData, A)

Scripting syntax

ETS_GPRasterCalculator  (Raster_A, Raster_B, Raster_C, Raster_D, out_raster, expression)

See the explanations above:

<> - required parameter

{} - optional parameter



.NET implementation

(Go to TOP)

RasterCalculator (rasterDatasetA As IRasterDataset2, rasterDatasetB As IRasterDataset2, rasterDatasetC As IRasterDataset2, rasterDatasetD As IRasterDataset2,

sOutRaster As String, sExpression As String) As IRasterDataset2

The Raster Calculator uses the free MuParser © Ingo Berg (see license). 

Copyright © Ianko Tchoukanski



Replace NoData

ToolBox Implementation .NET Implementation

Replaces the cells with NODATA values in the input rasters with the values of the corresponding cells of the replace raster or a

constant.

Inputs:

Input Raster dataset 

Output raster name and format

Optional - Replace Raster dataset

Optional - Constant value to replace the NODATA values.

Output:

A raster dataset.

Notes:

One of the optional parameters is needed

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

The input raster must be in a projected coordinate system.

ToolBox implementation

Command line syntax

ETS_GPReplaceNoData <Input Raster>  <Out Raster> {Replace Raster} {Replace Value}

Parameters

Expression Explanation

<Input Raster> A Raster dataset or Raster layer

<Out Raster> A String - the full name of the output raster (A raster with the same full name should not exist).

The output raster type depends on the extension of the output file(see Notes above)

{Replace Raster} A Raster dataset or Raster layer  - to be used as a replacement of the NODATA values

{Replace Value} A Number - to be used as a replacement of the NODATA values

Scripting syntax

ETS_GPReplaceNoData (Input Raster,  Out Raster, Replace Raster, Replace Value)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)



ReplaceNoData (inRasterDataset As IRasterDataset2, sOutRaster As String, Optional replaceRasterDataset As

IRasterDataset2 = Nothing, Optional dValue As Double = 0) As IRasterDataset2

Copyright © Ianko Tchoukanski



Zonal Statistics

ToolBox Implementation .NET Implementation

Analyses the values of a raster within each polygon of the input polygon dataset. Calculates statistics for each polygon and

adds them in the attribute table of the output.

Inputs:

A polygon feature class

A raster dataset for which the statistics will be calculated.

A prefix for the field names. The function adds several fields to the polygon attribute table. The prefix will help the user

to calculate the statistics of several rasters for the same polygons and add the results to the same attribute table. For

example the user wants to calculate statistics for the slope and elevation for a polygon dataset. This requires two

different rasters (Elevation and Slope). The function needs to be run twice

on the Elevation raster with prefix "EL"

on the Slope raster with prefix "SL"

The result will contain fields "EL_Min", "EL_Max", "SL_Min", "SL_Max", etc.

Outputs:

A polygon dataset - a copy of the original polygons

All the original attributes will be preserved.

Depending on the type of the raster used, the following statistics will be calculated for each polygon and added to the

attribute table of the output (XXX in the field names below replaces the prefix used in the function).

Integer and Floating point rasters

XXX_Count - the number of cells within a zone

XXX_Sum - the sum of the cell values within a zone

XXX_Min - the minimum values within a zone

XXX_Max - the maximum value within a zone

XXX_Range - the range of values within a zone

XXX_Mean - the average of the values within a zone

XXX_STD - the standard deviation of the values in a zone

XXX_Median - the median value in a zone

Integer rasters only

XXX_Major - the majority value (the value that appears most timesin a zone).

XXX_Minor - the minority value (the value that appears least times in a zone).

XXX_Var - variety (the number of unique values in a zone).

Notes:

If the input polygon dataset has multi-part polygons, they will be exploded into single part polygons and the statistics

will be calculated for the single part polygons.

ToolBox implementation

Command line syntax

ETS_GPZonalStatistics <Input Polygons> <Input Raster>  <Out Raster> <Prefix>

Parameters

Expression Explanation

<Input Polygons> A Polygon layer or feature class

<Input Raster> A  Raster dataset or Raster layer



<Out File Name> A String - the full name of the output feature class.

<Prefix> A String (maximum 3 characters) representing the prefix. See description above.

Scripting syntax

ETS_GPZonalStatistics (Input Polygons, Input Raster,  Out File Name, Prefix)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

ZonalStatistics (polygonFeatureClass As IFeatureClass, inRasterDataset As IRasterDataset2, sOutFeature As String, sPrefix

As String) As IFeatureClass 

Copyright © Ianko Tchoukanski



Focal Statistics

ToolBox Implementation .NET Implementation

Derives value for the output calls from a neighborhood of cells centered in the output cell. The neighborhood is with user

defined shape (square or circle) and size (width or diameter) in number of cells. 

Neighborhoods:

Square Circle

Width = 3 Width = 5 Diameter = 3 Diameter = 5

Inputs:

Input raster dataset

Output raster name and format

Neighborhood shape

Square

Circle

Neighborhood size (width for square and diameter for circle) in pixels/number of cells. The size needs to be an odd

number in order to place the cell for which the calculations are performed in the center of the neighborhood.

Statistics type .

Integer and Floating point rasters

Sum - the sum of the cell values within the neighborhood

Min - the minimum values within  the neighborhood

Max  - the maximum value within  the neighborhood

Range - the range of values within  the neighborhood

Mean - the average of the values within  the neighborhood

STD - the standard deviation of the values in  the neighborhood

Median - the median value in  the neighborhood

Integer rasters only

Major - the majority value (the value that appears most times in  the neighborhood).

Minor - the minority value (the value that appears least times in  the neighborhood).

Variety - variety (the number of unique values in  the neighborhood).

Output:

A raster with type depending on the type of the input raster and the type of statistics performed.

Floating point input raster - Floating point output

Integer input raster

MEAN or STD statistics type - Floating point output

Any other type statistics - Integer output

Example:

Neighborhood Results for the center cell



Sum = 49

Min = 2

Max = 9

Range = 7

Mean = 5.44

STD = 2.54

Median = 5

Major = 3

Minor = 2

Variety = 7

Notes:

Supported raster formats are File Geodatabase raster, Personal Geodatabase raster and file based  raster formats

(ESRI GRID, Erdas Imagine and TIFF).

For file based rasters initially the name of the output raster defines the raster format

no extension specified - ESRI binary GRID

.img extension (for example raster1.img) - ERDAS IMAGINE image.

.tif extension (for example raster1.tif - Tagged Image File Format (TIFF) image.

The initial output raster format can be changed by selecting the desired output in the dialog.

The input raster must be in a projected coordinate system.

ToolBox implementation

Command line syntax

ETS_GPFocalStatistics <Input Raster>  <Out Raster> <Statistics Type> <Neighborhood Type> <Neighborhood Size>

Parameters

Expression Explanation

<Input Raster> A Raster dataset or Raster layer

<Out Raster> A String - the full name of the output raster (A raster with the same full name should not

exist). The output raster type depends on the extension of the output file(see Notes above)

<Statistics Type> A String - the type of the statistics to be calculated.  Valid values

Sum

Min

Max

Range

Mean

STD

Median

Major 

Minor 

Variety 

<Neighborhood Type> A String - the neighborhood type. Valid values: Square and Circle

<Neighborhood Size> An integer - the side of the square or the diameter of the circle in pixels/number of cells. This

should be an odd number.

Scripting syntax

ETS_GPFocalStatistics (Input Raster, Out Raster, Statistics Type, Neighborhood Type, Neighborhood Size)



See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

FocalStatistics (inRasterDataset As IRasterDataset2, sOutRaster As String, sStatsType As String, sNeighborhoodType As

String, iSize As Integer) As IRasterDataset2 

Copyright © Ianko Tchoukanski



Point Statistics

ToolBox Implementation .NET Implementation



Analyses the values of a raster within user defined neighborhood around each point of the input point dataset. Calculates

statistics for each point and adds them in the attribute table of the output.

Neighborhoods (the grey cell is the cell in which the point is located):

Square Circle

Width = 3 Width = 5 Diameter = 3 Diameter = 5

 

Inputs:

A point feature class

A raster dataset for which the statistics will be calculated.

A prefix for the field names. The function adds several fields to the point attribute table. The prefix will help the user to

calculate the statistics of several rasters for the same points and add the results to the same attribute table. For

example the user wants to calculate statistics for the slope and elevation for a point dataset. This requires two

different rasters (Elevation and Slope). The function needs to be run twice

on the Elevation raster with prefix "EL"

on the Slope raster with prefix "SL"

The result will contain fields "EL_Min", "EL_Max", "SL_Min", "SL_Max", etc.

Outputs:

A point dataset - a copy of the original points

All the original attributes will be preserved.

Depending on the type of the raster used, the following statistics will be calculated for each point and added to the

attribute table of the output (XXX in the field names below replaces the prefix used in the function).

Integer and Floating point rasters

XXX_Count - the number of cells within a zone

XXX_ZVal - the Z value of the cell in which the point is located.

XXX_Sum - the sum of the cell values within a zone

XXX_Min - the minimum values within a zone

XXX_Max - the maximum value within a zone

XXX_Range - the range of values within a zone

XXX_Mean - the average of the values within a zone

XXX_STD - the standard deviation of the values in a zone

XXX_Median - the median value in a zone

Integer rasters only

XXX_Major - the majority value (the value that appears most times in a zone).

XXX_Minor - the minority value (the value that appears least times in a zone).

XXX_Var - variety (the number of unique values in a zone).

ToolBox implementation

Command line syntax

ETS_GPPointStatistics <Input Points> <Input Raster>  <Out Raster> <Neighborhood Type> <Neighborhood Size> <Prefix>

Parameters



Expression Explanation

<Input Points> A Point layer or feature class

<Input Raster> A  Raster dataset or Raster layer

<Out File Name> A String - the full name of the output feature class.

<Neighborhood Type> A String - possible values are "SQUARE" and "CIRCLE"

<Neighborhood Size> A Number - the diameter or side in pixels.

<Prefix> A String (maximum 3 characters) representing the prefix. See description above.

Scripting syntax

ETS_GPPointStatistics (Input Points, Input Raster,  Out File Name, Neighborhood Type, Neighborhood Size, Prefix)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

PointStatistics (pointFeatureClass As IFeatureClass, inRasterDataset As IRasterDataset2, sOutFeature As String,

sKernelType As String, iSize As Integer, sPrefix As String) As IFeatureClass

Copyright © Ianko Tchoukanski



PolylineZ Characteristics

ToolBox Implementation .NET Implementation



Calculates several characteristics of the features from a PolylineZ feature class. The results are stored in fields in the polyline

attribute table of the input or in a new polyline feature class

Inputs:

A PolylineZ feature layer

Linear precision - the number of digits after the decimal point for linear measures

Angular precision - the number of digits after the decimal point for angular measures

NODATA value - a number that represents undefined Z values. If the Z values of a geometry are interpolated from a

surface and some of the vertices of the geometry are outside of the extent of the surface, they will not have Z values.

Since ArcGIS does not accept NaN (Not a Number) values in Z enabled shapes, a numeric value is assigned to these

vertices. If the Features To 3D function of ET Surface is used to derive the Z values, the NODATA value is

-1000000000.  When calculating Z characteristics this values need to be ignored. Segments that have a vertex with

NODATA Z value will be ignored in the calculations.

Outputs:

The results are stored in the attribute table of the input dataset or in a new feature class. The linear measures are in the units

of the spatial reference of the input dataset. The slope is measured in degrees (from -90 to +90). A negative value of the slope

indicates downhill. The following fields are added to the attribute table 

[3D_Length] - the true 3D length of the polyline

[2D_Length] - the 2D length of the polyline

[Max_Z] - Maximum Z value

[Min_Z] - Minimum Z value

[Len_Up]  - distance uphill

[Len_Down] - distance downhill

[H_Up] - total increase in height

[H_Down] - total decrease in height

[Av_S_Up] - average slope uphill

[Max_S_Up] - maximum slope uphill

[Av_S_Down] - average slope downhill

[Max_S_Down] -maximum slope downhill

ToolBox implementation

Command line syntax

ETS_GPPolylineZChars <Input Dataset>  <Out Feature Class> {Linear Precision}, {Angular Precision}, {NODATA Value}

Parameters

Expression Explanation

<Input Dataset> A Polyline feature layer or feature class

<Out Feature Class> A String - the full name of the output feature class

{Linear Precision} An Integer representing the number of digits after the decimal point for linear measures

{Angular Precision} An Integer representing the number of digits after the decimal point for angular measures.

{NODATA Value} A Double - see explanations above

Scripting syntax

ETS_GPPolylineZChars (Input Dataset,  Out Feature Class, Linear Precision, Angular Precision, NODATA Value)

See the explanations above:

<> - required parameter



{} - optional parameter

.NET implementation

(Go to TOP)

PolylineZChars (inFeatureClass As IFeatureClass, sOutFeature As String, Optional linearPrecision As Integer = 2, Optional

angularPrecision As Integer = 2, Optional dNoData As Double = -1000000000) As IFeatureClass

Copyright © Ianko Tchoukanski



Split PolylineZ based on slope direction change

ToolBox Implementation .NET Implementation

Splits the polylines of PolylineZ dataset in the points of change of the direction of the slope. Several characteristics of the

resulting PolylineZ features are calculated and populated in the attribute table. Optionally a point feature class that contains the

turning points (Ridges and Valleys) can be created.

Inputs:

A PolylineZ feature layer

Name for the output dataset.

Linear precision - the number of digits after the decimal point for linear measures

Angular precision - the number of digits after the decimal point for angular measures

NODATA value - a number that represents undefined Z values. If the Z values of a geometry are interpolated from a

surface and some of the vertices of the geometry are outside of the extent of the surface, they will not have Z values.

Since ArcGIS does not accept NaN (Not a Number) values in Z enabled shapes, a numeric value is assigned to these

vertices. If the Features To 3D function of ET Surface is used to derive the Z values, the NODATA value is

-1000000000.  When calculating Z characteristics this values need to be ignored. Segments that have a vertex with

NODATA Z value will be ignored in the calculations.

Units for slope calculations (percent or degrees)

Optional. Name of the output point feature class.

Outputs:

A PolylineZ feature class. Each polyline have segments with positive (upwards), negative (downwards)  or Zero slope.

The attribute table will contain all original attributes. The following fields will be added:

[3D_Length] - the true 3D length of the polyline

[2D_Length] - the 2D length of the polyline

[Max_Z] - Maximum Z value

[Min_Z] - Minimum Z value

[DeltaH]  - the difference in Z between the start and end point of the polyline.

[Slope_Dir] - the direction of the slope for this polyline. The values can be Up, Down, Flat or Undefined (for

segments that contain NODATA Z values)

[Max_Slope] - the maximum slope

[Min_Slope] - the minimum slope

[Slope] - average slope calculated based on the Z values of the start and end points of the polyline and the

2D length.

1.

A Point dataset that contains the turning points (Ridges and Valleys). The following fields will be included in the

attribute table

[ET_Z] - the Z value of the point

[ET_Type] - the type of the turning point - Ridge or Valley.

2.

ToolBox implementation

Command line syntax

ETS_GPSplitPolylineBySlope <Input Dataset>  <Out Feature Class> <Slope Units> {Output Points} {Linear Precision},

{Angular Precision}, {NODATA Value}

Parameters

Expression Explanation

<Input Dataset> A Polyline feature layer or feature class

<Out Feature Class> A String - the full name of the output feature class



<Slope Units> A String representing the unit of the slope. Valid values - "Degrees" and "Percent"

{Output Points} A String - the full name of the output feature class that will contain the turning points (Ridges

and Valleys).

{Linear Precision} An Integer representing the number of digits after the decimal point for linear measures

{Angular Precision} An Integer representing the number of digits after the decimal point for angular measures.

{NODATA Value} A Double - see explanations above

Scripting syntax

ETS_GPSplitPolylineBySlope (Input Dataset,  Out Feature Class, Slope Units, Out Linear Precision, Angular Precision,

NODATA Value)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

SplitPolylinesZBySlope (inFeatureClass As IFeatureClass, sOutFeature As String, slopeUnits As String, Optional outputPoints

As String = "", Optional linearPrecision As Integer = 2, Optional angularPrecision As Integer = 2, Optional dNoData As Double

= -1000000000) As IFeatureClass

Copyright © Ianko Tchoukanski



Polygon 3D Characteristics

ToolBox Implementation .NET Implementation

Calculates some 3D characteristics of the features from a polygon dataset based on a reference ESRI TIN or PolygonZ TIN.

Inputs:

A Polygon feature class

An ESRI TIN or PolygonZ TIN

Outputs:

New Polygon feature class. 

The original attributes are preserved.

New fields are added to the attribute table of the Multipatch feature class.

ET_ElMin  - the minimum Z value

ET_ElMax - the maximum Z value

ETSlopeMax - the maximum slope

ET_AreaZ - the 3D area

ET_Area - the 2D area

ToolBox implementation

Command line syntax - two different toolbox tools available depending on the type of the input TIN. Check the color coding for

specifics.

ETS_GPPolygon3DCharsEsriTIN <Input Dataset> <Input ESRI TIN>  <Out Feature Class>

ETS_GPPolygon3DCharsPolygonZTIN <Input Dataset> <Input PolygonZ TIN>  <Out Feature Class>

Parameters

Expression Explanation

<Input Dataset> A Polygon feature layer or feature class

<Input ESRI TIN> An ESRI TIN layer or dataset

<Input PolygonZ TIN> A PolygonZ TIN (feature class)

<Out Feature Class> A String - the full name of the output feature class.

Scripting syntax

ETS_GPPolygon3DCharsEsriTIN (Input Dataset, Input ESRI TIN, Out Feature Class)

ETS_GPPolygon3DCharsPolygonZTIN (Input Dataset, Input PolygonZ TIN, Out Feature Class)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

Polygon3DCharsEsriTIN (inFeatureClass As IFeatureClass, inTin As ITin, sOutFeature As String) As IFeatureClass

Polygon3DCharsPolygonZTIN (inFeatureClass As IFeatureClass, polygonZTin As IFeatureClass, sOutFeature As String) As

IFeatureClass



Copyright © Ianko Tchoukanski



Analyze TIN

ToolBox Implementation .NET Implementation

Calculates several  characteristics  for each triangle of a PolygonZ TIN

Minimum elevation

Maximum elevation

Mean elevation

Slope - identifies the slope, or maximum rate of elevation change for each triangle

Aspect - the values of the output field represent the compass direction of the slope (horizontal direction in which a

slope faces); 0 is true north, a 90 degree aspect is to the east etc. For  flat triangles (slope = 0) the value of -1 is

assigned for the aspect

Hill Shade- computes the brightness of each triangle based on a light source location.

3D Area

Inputs:

A  PolygonZ TIN feature layer

Characteristics to be calculated

Parameters for Hill Shade ( if Hill Shade option is selected )

azimuth - the azimuth angle of the light source. The azimuth is expressed in positive degrees from 0

to 360, measured clockwise from the north. The default is 315 degrees.

altitude - the altitude angle of the light source above the horizon. The altitude is expressed in positive

degrees, with 0 degrees at the horizon and 90 degrees directly overhead. The default is 45 degrees.

Outputs:

New polygon Z feature class. Several fields are added to the attribute table, depending on the options selected

ET_ElMin - minimum elevation values for each triangle

ET_ElMax - maximum elevation values for each triangle

ET_ElMean - mean elevation values for each triangle

ET_Slope_D - the slope (maximum rate of elevation change) of each triangle in Degrees (from 0 to 90)

ET_Sope_P - the slope (maximum rate of elevation change) of each triangle in percents

ET_Aspect - the aspect (compass direction of the slope - 0 is North, 90 degrees - East, 180 degrees - South, 270 -

West)  of each triangle

ET_ACode - aspect categories

N - North ( 0 to 22.5 and 337.5 to 360)

NE - North East (22,5 to 67.5)

E - East (67.5 to 112.5)

SE - South East (112.5 to 157.5)

S - South (67.5 to 112.5)

SW - South West (202.5 to 247.5)

W - West (247.5 to 292.5)

NW - North West (292.5 to 337.5)

U - Undefined - Slope = 0

ET_AreaZ - the 3D area of each triangle

Notes:

If the PolygonZ TIN is created using ET Surface, you need to analyze the tin only if you need to obtain the values for

Hill Shade or calculate them for  different Azimuth and/or Altitude of the light source

If you have PolygonZ TIN created with ET GeoWizards (or some other application), you will need to use the Analyze

TIN function in order to get correct parameters for use with the ET Surface functions.

ToolBox implementation

Command line syntax



ETS_GPAnalyzeTIN <Input TIN>  <Out Feature Class>  {Light Azimuth} {Light Altitude}

Parameters

Expression Explanation

<Input TIN> A PolygonZ TIN (feature layer or feature class)

<Out Feature Class> A String - the full name of the output feature class.

{Light Azimuth}
A Double representing azimuth of the light source (0 to 360). 0 indicates North, 90 -

East, 180 - South, 270 - West

{Light Altitude} A Double representing the altitude of the light source  in degrees (0 to 90)

Scripting syntax

ETS_GPAnalyzeTIN (Input TIN, Out Feature Class, Light Azimuth, Light Altitude)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

AnalyzePolygonZTIN(inFeatureClass As IFeatureClass, sOutFeature As String, Optional dAzimuth As Double = 315, Optional

dAltitude As Double = 45) As IFeatureClass

Copyright © Ianko Tchoukanski



Multiply Zs

ToolBox Implementation .NET Implementation

Multiplies the Z values of the geometries of the input Z dataset with an user specified factor.

Inputs:

A PointZ, PolylineZ, PolygonZ, Multipatch feature layer

Outputs:

New feature class of the same type as the input. The Z values of all points/vertices multiplied by the user specified

factor.

Notes:

Can be used to change the Z units of the geometries

If applied to a PolylineZ feature class with calculated Z characteristics, you will need to recalculate the characteristics

to reflect the changes of the Z values.

If applied on a PolygonZ TIN, you need to analyze the TIN again to reflect the changes.

ToolBox implementation

Command line syntax

ETS_GPMultiplyZs <Input Dataset>  <Out Feature Class> <Multiply With>)

Parameters

Expression Explanation

<Input Dataset> A Polyline feature layer or feature class

<Out Feature Class> A String - the full name of the output feature class

<Multiply With> A Number representing the multiply value.

Scripting syntax

ETS_GPMultiplyZs (Input Dataset,  Out Feature Class, Multiply With)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

MultiplyZs (inFeatureClass As IFeatureClass, sOutFeature As String, dValue As Double) As IFeatureClass

Copyright © Ianko Tchoukanski



Offset Zs

ToolBox Implementation .NET Implementation

Adds/subtracts a user specified value from the Z values of the geometries of the input Z dataset.

Inputs:

A PointZ, PolylineZ, PolygonZ, Multipatch feature layer

Outputs:

New feature class of the same type as the input. The user specified value will be added to the Z values of all

points/vertices.

Notes:

If applied to a PolylineZ feature class with calculated Z characteristics, you will need to recalculate the characteristics

to reflect the changes of the Z values.

If applied on a PolygonZ TIN, you need to analyze the TIN again to reflect the changes.

ToolBox implementation

Command line syntax

ETS_GPOffsetZs <Input Dataset>  <Out Feature Class> <Offset Value>)

Parameters

Expression Explanation

<Input Dataset> A Polyline feature layer or feature class

<Out Feature Class> A String - the full name of the output feature class

<Offset Value> A Number representing the Offset value

Scripting syntax

ETS_GPOffsetZs (Input Dataset,  Out Feature Class, Offset  Value)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

OffsetZs (inFeatureClass As IFeatureClass, sOutFeature As String, dValue As Double) As IFeatureClass

Copyright © Ianko Tchoukanski



Clean Contour Gaps

ToolBox Implementation .NET Implementation

Cleans the gaps in a polyline dataset representing contours.

Inputs:

A Polyline dataset

A field representing the elevation value of the contours

Tolerance - the gaps smaller than this tolerance will be closed.

Outputs:

New polyline feature class. The gaps in the contours that a smaller than the selected tolerance are closed.

Notes: 

The function is designed specifically for contours, but it can be used on datasets representing different features.

Always inspect the results before accepting them as valid.

Example :

Input Contours Resulting Polylines

ToolBox implementation

Command line syntax

ETS_GPCleanContourGaps <Input Dataset>  <Out Feature Class> <Gap Size> <Height Field>

Parameters

Expression Explanation

<Input Dataset> A Polyline feature layer or feature class

<Out Feature Class> A String - the full name of the output feature class

<Gap Size> A Double representing the tolerance. The gaps in the contours that a smaller than this tolerance

will be closed.

<Height Field> A String representing the name of the height field in the input contour dataset.

Scripting syntax

ETS_GPCleanContourGaps (Input Dataset,  Out Feature Class, Gap Size, Height Field)

See the explanations above:

<> - required parameter

{} - optional parameter



.NET implementation

(Go to TOP)

CleanContourGaps (inFeatureClass As IFeatureClass, sOutFeature As String, gapSize As Double, heightField As String) As

IFeatureClass 

Copyright © Ianko Tchoukanski



###########################################################################

#                                                                         #             

#                                                                         #

#                 __________                                              #

#    _____   __ __\______   \_____  _______  ______  ____ _______         #

#   /     \ |  |  \|     ___/\__  \ \_  __ \/  ___/_/ __ \\_  __ \        #

#  |  Y Y  \|  |  /|    |     / __ \_|  | \/\___ \ \  ___/ |  | \/        #

#  |__|_|  /|____/ |____|    (____  /|__|  /____  > \___  >|__|           #

#        \/                       \/            \/      \/                #

#   Copyright (c) 2010 Ingo Berg                                          #

#                      muparser{at}gmx.de                                 #

#                                                                         #  

#                                                                         #  

#   This Software is published under the Terms of the MIT Licence         #  

#                                                                         #  

#                                                                         #  

###########################################################################

Permission is hereby granted, free of charge, to any person obtaining a copy of 

this software and associated documentation files (the "Software"), to deal in 

the Software without restriction, including without limitation the rights to use,

copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the 

Software, and to permit persons to whom the Software is furnished to do so, 

subject to the following conditions:

The above copyright notice and this permission notice shall be included in all 

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, 

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A 

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT 

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION 

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.



Open Table of Contents

TRIANGULATED IRREGULAR NETWORK

The TIN model represents a surface as a set of contiguous, non-overlapping triangles. Within each triangle the surface is

represented by a plane. The triangles are made from a set of points called mass points.

Mass points can occur at any location, the more carefully selected, the more accurate the model of the surface. Well-placed mass

points occur where there is a major change in the shape of the surface, for example, at the peak of a mountain, the floor of a valley,

or at the edge (top and bottom) of cliffs.

The TIN model is attractive because of its simplicity and economy and is a significant alternative to the regular raster of the GRID

model.

Quick comparison:

 TIN GRID

Advantages

ability to describe the 

surface at different level

of resolution

efficiency in storing data

easy to store and manipulate

easy integration with raster databases

smoother, more natural appearance of derived terrain features

Disadvantages

in many cases require 

visual inspection and

manual control of the 

network

inability to use various grid sizes to reflect areas of different complexity of relief.

The Delaunay Triangulation

Delaunay triangulation is a proximal method that satisfies the requirement that a circle drawn through the three nodes of a triangle will contain no other node

   Delaunay triangulation has several advantages over other triangulation methods:

The triangles are as equi-angular as possible, thus reducing potential numerical precision problems created by long skinny triangles

Ensures that any point on the surface is as close as possible to a node

The triangulation is independent of the order the points are processed 

TINs from contours

Contours are a common source of digital elevation data. In general all the vertices of the contour lines are used as mass points for triangulation. In many cases this

will cause the presence of flat triangles in the surface.

Flat triangles are created whenever a triangle is formed from three nodes with the same elevation value

Flat triangles are frequently generated along contours when the sample points occur along the contour at a distance that is less than the distance between contours.

When these "excess" vertices are not removed , the Delaunay triangulation discovers that the closest sample points are those along the same contour, causing the

generation of flat triangles.

The flat triangles have a slope of 0 and do not have defined aspect. They might cause problems when the surface is used for modeling.

Example:

The contours The triangulation - We can see several flat triangles here

file:///C:/DOCUME~1/Ianko/LOCALS~1/Temp/ETSurface.chm/et_geowizards_userguide.htm


The elevation
The slope- The green areas indicate

Slope = 0 (flat triangles)

How can we avoid the flat triangles? 

By adding more mass points 

Generalizing the contours 

By adding break lines 

Break lines

Linear features which define and control surface behavior in terms of smoothness and continuity are called break lines.

Types break lines: 

Soft break lines are used to ensure that linear features and polygon edges are maintained in the tin surface model by enforcing the break line as tin edges.

However, they do not define interruptions in surface smoothness – break lines with no Z value

Hard break lines define interruptions in surface smoothness – break lines with  Z value

Example:

 No break lines Soft break lines Hard break lines

The Data

The 

Triangulation



The Surface

3D View

Storing TINs

There are basically two ways of storing triangulated networks:

Triangle by triangle

Points and their neighbors 

The first method is better for storing attributes (slope, aspect ..) for each triangle, but uses more storage space. The second one is better for generating contours and

uses less storage space, but slope, aspect , etc must be calculated and stored separately.

Copyright © Ianko Tchoukanski


	Getting Started
	What is ET Surface
	Installation
	How to load ET Surface tool in Arc Toolbox
	How To Register
	Surface Types
	ET Surface and Projections
	Raster Functions - performance and limits
	ET Surface Toolbar
	Hydrological Functions
	Hydrology Toolbar
	Main Dialog
	Using .NET
	Functions and Surfaces

	ET TerrainViewer
	What's new
	System Requirements
	Configuring the Viewer
	Data Formats
	Layers types and properties
	Layers Symbology
	User Interface
	Navigation
	Tools
	Using the Project Manager
	Mini-Map and Cockpit

	Profile Extractor
	Online Video Tutorial
	Profile Tools
	Profile Window
	Profile Settings
	Profile Properties
	Add Layers to Profile
	Layer Properties
	Draw On View
	Draw On Layout
	Animate Profile
	Export Options
	Sample Distance

	Line of Sight (LOS)
	LOS Discussion
	LOS Tool
	Rotate Observer

	Digitize Z Geometries
	Manage Graphics
	Interpolate Surface
	Build TIN
	Contours To Raster
	IDW
	Density
	Modify TIN

	Conversion
	ESRI TIN to PolygonZ TIN
	TIN to Edges
	TIN to Nodes
	Polygon to Multipatch
	Multipatch to Polygon
	Features To Raster
	ESRI TIN To Raster
	Features to 3D

	TIN Surface Analyzis
	TIN Slope
	TIN Aspect
	Interpolate Contours
	Volume of TIN
	Volume of Polygons
	Cut/Fill Analysis
	Visibility Analysis
	Identify Peaks and Sinks

	Raster Surface Analysis
	Raster Slope
	Raster Aspect
	Raster Hillshade
	Contours from Raster
	Raster Viewshed
	Cut/Fill Analysis
	Raster Volume
	General Curvature
	Plan Curvature
	Profile Curvature

	Raster Distance Analysis
	Euclidean Distance
	Euclidean Direction
	Voronoi Allocation
	Weighted Voronoi Allocation
	Cost Allocation (Cost from source)
	Cost Distance (Cost from source)
	Cost Allocation (Cost from raster)
	Cost Distance (Cost from raster)

	Raster Processing
	Clip Raster with Envelope
	Clip Raster with Polygons
	Erase Raster with Polygons
	Smooth Raster
	Clean Boundaries
	Create Constant Raster
	Create Random Raster
	Change Raster Data Type
	Invert Raster
	Resample Raster

	Hydrology
	Find NoFlow Areas
	Fill Depressions
	Flow Direction D8
	Flow Direction D-infinity
	Flow Accumulation D8
	Flow Accumulation D-infinity
	Extract Outlets
	Create Stream Raster
	Strahler Stream Order
	Stream Link
	Stream Raster to Features
	Snap Pour Points
	Watershed
	Streams and Watershed

	Raster Math
	Raster Calculator
	Replace NODATA

	Raster Statistics
	Zonal Statistics
	Focal Statistics
	Point Statistics

	3D Characteristics
	PolylineZ Characteristics
	Split PolylineZ based on slope
	Polygon 3D Characteristics
	Analyze PolygonZ TIN

	Miscellaneous
	Multiply Zs
	Offset Zs
	Clean Contour Gaps
	Split PolylineZ by Slope


