
ET GeoWizards

ET GeoWizards is a set of powerful functions that will help the GIS professionals to manipulate data
with easy. It offers more than 100 functions for spatial data conversion, analysis, topological cleaning,
sampling and many more. ET GeoWizards was initially developed as an extension for ArcGIS and for

the last 15 years it became the most popular third party ArcGIS extension for data processing.

As from version 12.0 ET GeoWizards is available as a standalone application and can be used by all
GIS professionals no matter what is the GIS platform they are using.

The functionality of ET GeoWizards is available in several ways:

Stand-alone Windows application with user friendly interface and integrated User Guide.

Seamlessly integrated in ArcGIS Desktop via

ArcGIS Desktop add-in that starts ET GeoWizards dialog from ArcMap

An ArcGIS toolbox that allows the functionality to be executed from ArcToolbox,

included in a Model using the Model Builder or ArcPy scripts.

Seamlessly integrated in ArcGIS Pro via

ArcGIS Pro add-in that starts ET GeoWizards dialog from within the ArcGIS Pro

interface

An ArcGIS Pro Toolbox that allows the functionality to be executed from

ArcToolbox, included in a Model using the Model Builder or ArcPy scripts.

All the functions can be executed using Python (no third party software required)

The tools can be integrated in custom .NET applications (no third party software required).

The functionality can be executed directly from the DOS Command Prompt.

ET GeoWizards is a native 64-bit application which allows handling very large datasets at impressive
speed. The functionality however can be executed from any 32-bit application (example - ArcMap).

ET GeoWizards is not a free program, but is has many free functions that can be used without
purchasing a license and registering the software. Until registered ET GeoWizards runs in DEMO
mode.

The Demo mode has the following limitations

Many of the features are free - do not have any restrictions with the DEMO

version. See ET GeoWizards - free features for a list

The rest of the functions have restriction of 100 features in the layer to be

processed.

Note that the Demo Mode is available only when the functions are executed from

the ET GeoWizards interface.

See How to Register ET GeoWizards for registration information

Copyright © Ianko Tchoukanski

Installation Instructions

System requirements

ET GeoWizards 12 is a 64-Bit application

It will run on Windows 7 and above 64-Bit and Windows Server 64-Bit

Note that you have to be logged as an Administrator on the machine when you are installing

ET GeoWizards

Download ET GeoWizards from http://www.ian-ko.com

Unzip ETGeoWizardsXX.zip - two files will be extracted from the archive:

setup.exe

ETGeoWizardsXXSetup.msi

Run setup.exe - a simple installation wizard will guide you through the process.

A new program group called ET GeoWizards 12 with 6 items will be created

ET GeoWizards 12 - the main executable - opens ET GeoWizards interface

ET GeoWizards User Guide

Readme

Install .NET Toolbox for ArcGIS Desktop

Register ETGW Add In for ArcGIS Desktop

Register ETGW Add In for ArcGIS Pro

To find the ET GeoWizards 12 Program Group

On Windows 7

Click on the Start button

Choose All Programs

Open the ETGeoWizards 12 folder

On Windows 8

Click on the Start button

Click the down button from the Windows tile screen

Locate the ETGeoWizards 12 section

On Windows 10

Click on the Start button

Choose All apps

Select ETGeoWizards 12 folder

If you want to use ET GeoWizards from within ArcMap you need to register the ET GeoWizards

for Desktop Add-In.

Find the ET GeoWizards 12 Program Group (see above)

Click on Register ETGW Add In for ArcGIS Desktop

If you have ArcGIS Desktop installed the Installation Utility will open

Click on Install Add-In

Open ArcMap

The ET GeoWizards 12 toolbar should be open. Note that the toolbar was introduced in ET

GeoWizards 12.1

If the toolbar is not open: In ArcMap click on Customize ==> Toolbars and check the ET

GeoWizards 12 toolbar.

If you want to use ET GeoWizards from within ArcGIS Pro you need to register the ET

GeoWizards for Pro Add-In.

Find the ET GeoWizards 12 Program Group (see above)

Click on Register ETGW Add In for ArcGIS Pro

If you have ArcGIS Pro installed the Installation Utility will open

Click on Install Add-In

Open ArcGIS Pro

Click on the Add-In Tab. The ET GeoWizards button should be available for use.

Notes:

For installing previous versions please see the user guide for ET GeoWizards 11.X

The Demo mode has the following limitations

Many of the features are free - do not have any restrictions with the DEMO

version. See ET GeoWizards - free features for a list

The rest of the functions have restriction of 100 features in the layer to be

processed.

Note that the Demo Mode is available only when the functions are executed from

the ET GeoWizards interface.

See How to Register ET GeoWizards for registration information

Copyright © Ianko Tchoukanski

Validate ET GeoWizards 12 Installation

ET GeoWizards relies on the directory structure it creates when installed. So it is not recommended
moving or deleting the files storred in the installation folders of ET GeoWizards. The exception to this
are the ArcGIS toolboxes .PYT files which users can place in any folder.

To validate that ET GeoWizards is correctly installed:

Start ET GeoWizards

On the Main Dialog click on the Settings button. The settings dialog will open

Click the Validate Install - the Validate dialog will open

On this dialog you can check whether the installation of ET GeoWizards is correct and

whether you are running it from the correct location

Copyright © Ianko Tchoukanski

How to register ET GeoWizards

A. Single use (fixed) license

The registration process involves three steps:

Follow the links from http://www.ian-ko.com and purchase a license of ET GeoWizards.

You will receive a reference number for your order.

1.

On the ET GeoWizards Main Dialog go to Help ==> Request License Key button. Fill

the small form - all the fields are required.

User Name

Company

Reference number (see Step 1)

After filling the form there are two options to chose from:

Create Key Request File will write all the information to a file (*.etr). Send this file

to register@ian-ko.com and in maximum 24 hours you will receive a license key

that will unlock the full version

Send Key Request via e-mail. This option will open you default e-mail program

with all necessary information. You just have to click the SEND button

Important note:

Do not change anything in the request file or the body of the generated message. It will
cause the registration process to fail.

2.

When you receive the Key File , save the attachment (*.etw file) to you hard disk. Click on

Register button (Main Dialog). In the form click on Load Key File button. Select the received

file. The ET GeoWizards dialog will close. When opened next time the program will be

registered.

3.

Important note:

Do not change anything in the Key File. It will cause the registration process to fail.

B. Concurrent license

http://www.ian-ko.com
mailto:register@ian-ko.com

ET LicenseManager should be installed on a PC on your network

Contact your system administrator and get the following information:

The Name or IP address of the PC where the ET LicenseManager is installed

 The TCP port on which the ET License Manager communicates

1.

On the ET GeoWizards toolbar click Help ==> Connect To License Server.2.

In the dialog fill

License Server - fill the network name or the IP Address of the license server

TCP Port - fill the port number

3.

Click on the Test License Server button4.

If a connection to the license server is established, click OK to save the settings. You are

ready to work.

5.

If the test fails - contact your system administrator.6.

Copyright © Ianko Tchoukanski

How to use ET GeoWizards as a stand alone application

See this topic on how to use in ArcGIS Desktop and ArcGIS Pro

A. Via the User Interface

Clicking on the ET GeoWizards 12 will introduce the ET GeoWizards main dialog1.

Select the appropriate group of functions in the navigation panel on the left.2.

Select the function required.3.

The appropriate topic of the User Guide will be displayed in the Help Window4.

To run the selected function click the GO button or the Run icon next the the function

name. You can also double click the function name.

5.

Note:

The dialog for each function has a Help Tab that contains the full help topic for the current function.

B. In Python scripts.

All the functions of ET GeoWizards can be used in Python Scripts by calling ETGWRun.exe located
in the installation folder of ET GeoWizards using the Subprocess Python module. ET GeoWizards 12

is a native 64-bit application, but since it runs in a separate process, it can be used from 32 and 64 bit
Python.

Below is an example of using a function of ET GeoWizards within a Python script

Calling the script RotateShapes from Command Prompt

python.exe RotateShapes.py "c:\00\aaaa.shp" "c:\00\aaaaRotated.shp" "45" "" "5" "5"

import sys, subprocess

argList = sys.argv

print len(argList)

if len(sys.argv) < 5:

 print "Usage:" , "RotateShapes <input_dataset> <output_dataset> <rotation_angle>

{origin_point_dataset} {Origin_X} {Origin_Y}"

else:

 etgwPath = r"C:\Program Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe"

 etFunction = "RotateShapes"

 inputDataset = argList[1]

 outputDataset = argList[2] rotation_angle = argList[3]

 origin_point_dataset = argList[4]

 Origin_X = "0"

 Origin_Y = "0"

 if len(sys.argv) >=6:

 Origin_X = argList[5]

 if len(sys.argv) >=7:

 Origin_Y = argList[6]

 print "Input: " , inputDataset

 print "Output: " , outputDataset

 retCode = subprocess.call([etgwPath, etFunction, inputDataset, outputDataset, rotation_angle,

origin_point_dataset, Origin_X,Origin_Y])

 if retCode == 0:

 print "Success"

 else:

 print retCode

The location of ETGWRun.exe can be derived from the registry using:

hKey = _winreg.OpenKey (_winreg.HKEY_LOCAL_MACHINE, r"SOFTWARE\ETSpatial

Techniques\ETGeo Wizards", 0, _winreg.KEY_READ|_winreg. KEY_WOW64_64KEY)

myPath = _winreg.QueryValueEx(hKey, "InstallPath")[0]

etgwPath = myPath+r"ETGWRun.exe"

_winreg.CloseKey(hKey)

C. In .NET applications

The functionality of ET GeoWizards can be also used in custom .NET applications. See this topic for
details

D. From the Command Prompt

The functionality of ET GeoWizards can be executed directly from the DOS command prompt.

Example:

ETGWRun.exe "RotateShapes" "c:\00\aaaa.shp" "c:\00\aaaaRotated.shp" "45" "" "5" "5"

Notes:

Please read the topic for a specific function for parameters description and syntax

Copyright © Ianko Tchoukanski

How to use ET GeoWizards in ArcGIS

See this topic on how to use as a Stand Alone application.

A. As Add-In for ArcGIS Desktop and ArcGIS Pro

Register the corresponding Add-In - see this topic for details.1.

Clicking on the ET button will introduce the ET GeoWizards main dialog2.

Select the appropriate group of functions in the navigation panel on the left.3.

Select the function required.4.

The appropriate topic of the User Guide will be displayed in the Help Window5.

To run the selected function click the GO button or the Run icon next to the the function

name. You can also double click the function name.

6.

Note:

The dialog for each function has a Help Tab that contains the full help topic for the current function.

B. In ArcToolbox - ArcGIS Desktop:

Due to the fact that ArcGIS Desktop has problems with loading large Python Toolboxes (takes long

time to load the toolboxes and slows down opening projects) ET GeoWizards 12.1 offers in addition
to the Python Toolbox a .NET toolbox which integrates better with ArcGIS Desktop .

.NET Toolbox.

Find the ET GeoWizards 12 Program Group (see this topic for details)1.

Run the installation of ET GeoWizards 12 .NET Toolbox2.

Right-click the ArcToolbox folder inside the ArcToolbox window and click Add

Toolbox.

3.

Navigate to the folder where the ToolBox is installed (the default folder is

"C:\Program Files (x86)\ET SpatialTechniques\ET GeoWizards 12 Toolbox for

ArcGIS Desktop") and select "ETGeoWizards12_NET.tbx"

4.

Click Open.5.

The ET GeoWizards 12 .NET toolbox will be loaded in ArcToolbox6.

Use the tools as any standard ArcToolbox tool.7.

Python Toolbox.

Right-click the ArcToolbox folder inside the ArcToolbox window and click Add

Toolbox.

1.

Navigate to the folder where ET GeoWizards is installed and select :

For ArcGIS 10.1 and 10.2 - ETGeoWizards12_Desktop_101_102.pyt

For ArcGIS 10.3, 10.4 and 10.5 -

ETGeoWizards12_Desktop_103_104_105.pyt

2.

Click Open.3.

The ET GeoWizards toolbox will be loaded in ArcToolbox4.

Use the tools as any standard ArcToolbox tool.5.

C. In ArcToolbox - ArcGIS Pro:

Click INSERT ==> Toolbox ==> Add Toolbox.1.

Navigate to the folder where ET GeoWizards is installed and select

ETGeoWizards12_Pro.pyt

2.

Click Open.3.

Open the Geoprocessing dialog - ANALYSIS ==> Tools4.

In the Geoprocessing window click on Toolboxes5.

Use the tools as any standard ArcToolbox tool.6.

Note that ArcGIS Pro might not allow you to drag a Tool to a Model. Just right click on the

tool ==> Add to Model

7.

D. In ArcPy scripts

The easiest way to get the syntax for an ArcPy script is to create a model in ArcGIS Desktop using
the ET GeoWizards tools. Then export the model as a Python script. Unfortunately in ArcGIS Pro you
cannot export your model as Python script. Below is a sample model using the ET GeoWizards tools

and the corresponding python script.

Import arcpy module

import arcpy

Load ET GeoWizards Toolbox

arcpy.ImportToolbox("C:/00/testToolBox/ETGeoWizards12_Desktop_103_104.pyt")

Local variables:

input = "C:\\00\\gp_pg.shp"

result1 = "C:\\00\\BoundingRect.shp"

result2 = "C:\\00\\Boundaries.shp"

Process: Features To Bounding Rectangles

arcpy.FeaturesToRectangles_ETGeoWizards(input, result1, "LongestSegment")

Process: Polygons To Polylines

arcpy.PolygonsToPolylines_ETGeoWizards(result1, result2, "false", "false")

Notes:

The installation of ET GeoWizards places the toolboxes for ArcGIS Desktop and ArcGIS
Pro in the installation folder of ET GeoWizards. Since ArcGIS Desktop and ArcGIS Pro tend
to create a separate XML file for each tool in the toolbox, it is recommended to copy the

required toolbox in an user folder with write access.

Since the usage of the ET GeoWizards tools is exactly the same as the standard tools
provided with ArcGIS, we highly recommend you to have a look at "Geoprocessing in

ArcGIS" in the desktop help.

For the parameters required by each tool and syntax, please have a look at the topic for the
specific tool.

Copyright © Ianko Tchoukanski

How to use ET GeoWizards functionality in .NET

All the functions of ET GeoWizards 12 can be used in custom applications developed in .NET. The
syntax of each ET GeoWizards function is described in the main topic of the function ==> .NET
implementation.

There are two ways to execute the functionality of ET GeoWizards 12 in .NET

A. As a separate process - The advantages are:

Your application can be 32 Or 64-bit.

You don't need to copy additional files in the folder of your application

Example:

Prerequisites

ET GeoWizards 12 installed on the computer and registered.

Microsoft Visual Studio

Start Visual Studio1.

Go to File ==> New ==> Project

Select Project Type (for the purpose of this example - Windows Forms Application)

2.

Create a button on your form3.

Double click on the button to start editing the code4.

Paste the code below5.

Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 'Set the path to ETGWRun.exe

 Dim ETRunPath As String = "C:\Program Files\ETSpatial Techniques\ETGeo

Wizards\ETGWRun.exe"

 'We are going to use the Explode Multipart Features for thei example

 Dim sFunction As String = "ExplodeMultipart"

 'Set the input dataset with the full path to the shapefile. Note that the Argument separator is

space. If a string might contain a space, you need to double quote it.

 Dim sInDataset As String = Chr(34) & "C:\testData\aaaa.shp" & Chr(34)

 'Set the full name of the output

 Dim sOutFN As String = Chr(34) & "C:\testData\0000result3.shp" & Chr(34)

 'Execute the ExplodeMultipart function

 Dim sArgumentList As String = sFunction & " " & sInDataset & " " & sOutFN

 Dim wProc As Diagnostics.Process = New Diagnostics.Process

 Dim procParam As String = sArgumentList

 wProc.StartInfo.FileName = ETRunPath

 wProc.StartInfo.Arguments = procParam

 wProc.Start()

 Dim wProcID As Integer = wProc.Id

 wProc.WaitForExit()

 Dim iResult As Integer

 If wProc.HasExited Then

 'Check the result - iResult = 0 - Success, any other returned value indicate that the function

failed.

 iResult = wProc.ExitCode

 If iResult = 0 Then

 MsgBox("Function completed successfully!!!")

 Else

 MsgBox("Problems encountered during the execution!!! See the log file for details.")

 End If

 End If

End Sub

B. Using directly the Core ET GeoWizards DLL

Advantages:

Seamless integration.

You we'll be able to use some utility functions provided in the core ET GeoWizards

DLL

Disadvantages

Your application must be 64-bit

You have to copy several files in the folder from which your application will run

Example:

Prerequisites

ET GeoWizards 12 installed on the computer and registered.

Microsoft Visual Studio

Start Visual Studio1.

Go to File ==> New ==> Project

Select Project Type (for the purpose of this example - Windows Forms Application)

2.

Go to Project ==> Properties ==> References:

Add reference ==> Browse ==> navigate to the installation folder of ET GeoWizards

12 and select ETGWOutX.dll. Make sure that "Copy Local" is set to true in the

reference properties.

3.

Make sure that your application is 64-Bit

Go to Project ==> Properties ==> Compile ==> Target CPU = x64

4.

Save the Assembly and Build it.5.

Copy from the ET GeoWizards 12 installation folder to the folder where your application is the

following files

the entire GDAL sub-folder

gdalconst_csharp.dll, gdalconst_wrap.dll, gdal_wrap.dll, ogr_wrap.dll, osr_wrap.dll

6.

Create a button on your form7.

Double click on the button to start editing the code8.

Paste the code below 9.

Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 'Get reference to ETGWOutRun

 Dim ETGWOut As ETGWOutX.ETGWOutRun = New ETGWOutX.ETGWOutRun(True)

 'We are going to use the Explode Multipart Features for the example

 'Set the input dataset with the full path to the shapefile

 Dim sInDataset As String = "C:\testData\input.shp"

 'Set the full name of the output

 Dim sOutFN As String = "C:\testData\result.shp"

 'Execute the ExplodeMultipart function

 Dim iResult As Integer = ETGWOut.ExplodeMultipart(sInDataset, sOutFN)

 'Check the result - iResult = 0 - Success, any other returned value indicate that the function

failed.

 If iResult = 0 Then

 MsgBox("Function completed successfully!!!")

 Else

 MsgBox("Problems encountered during the execution!!! See the log file for details.")

 End If

End Sub

Copyright © Ianko Tchoukanski

ET GeoWizards and Projections

Some short definitions

Projection - The two-dimensional representation of the three-dimensional space.

Coordinate System - a reference system for measurements defined by the projection

Geographic Coordinate System - measures locations in degrees - latitude and

longitude. Since latitude and longitude are angular measurements they are not

suitable for measuring distances. The major parameter of a Geographic

Coordinate System is its datum

Projected Coordinate System - uses a projection to transform the latitude and

longitude to X and Y coordinates and makes the linear measurements more

accurate. Each projected coordinate system is based on a Geographic Coordinate

System

Spatial Domain - the range and precision of coordinates that can be stored in a feature

dataset

Spatial Reference - contains information for the coordinate system and spatial domain

extent for a feature dataset

Projections of the data

Projected data - the data is explicitly projected in a Projected Coordinate System

Unprojected data - the data is in a Geographic Coordinate System

Data with unknown projection - the projection information is missing

ET GeoWizards works with data in any projection.

Notes:

All the wizards preserve the Spatial Reference of the input data source unless an option is

available and the user selects it. The assumption is that if the user keeps a dataset in

certain projection he has reasons for that, and all the products of this data set must be in

the same projection.

When a distance input is required (Fuzzy tolerance, Dangling tolerance etc.) best results

will be achieved if the data is projected in a specific projection, because the tolerance is

compared directly with the data.

Although possible, it is not recommended to manipulate Unprojected data (data in a

Geographic Coordinate System) for reasons mentioned above.

Copyright © Ianko Tchoukanski

ET GeoWizards spatial data formats

General

ET GeoWizards 12 uses Geospatial Data Abstraction Library (GDAL) for reading and writing spatial
data. All functions accept as input and produce output in Shapefile or File Geodatabase (File GDB)
which are the most common spatial data formats and most GIS products can read/write one or both

data formats.

In order to use your spatial data in the ET GeoWizards functions you need to convert it to Shapefile or
File GDB first

Shapefile

consists of several files. The first 3 listed below are compulsory and the forth is very

important if the data is to be used for spatial analysis.

*.shp - containing the geometry information

.dbf - containing the attribute information

.shx - positional index

.prj - contains the coordinate system and projection information of the data

etc.

ET GeoWizards accepts as input the full name of the .shp file (for example

c:\data\input.shp") and treats all the files with the same name and different extension as a

single dataset. In a similar fashion if the user specifies as an output the full name to a .shp

file (for example c:\data\output.shp") the functions of ET GeoWizards will produce a full set

of files comprising a Shapefile dataset.

Supports Z and M (measures) and is suitable for representing 3D geometries and used in

linear referencing tasks.

Does not support true curves. The curves are approximated using linear segments.

The attributes are stored in a DBF file. Maximum length of field names - 10 characters

File Geodatabase (File GDB)

The Esri File Geodatabase is a collection of data layers stored in a file system. The File GDB format
has emerged as a very common format for storing and exchanging spatial data. A File GDB is a
folder that ends with .gdb extension.

ET GeoWizards accepts as input the full name of a layer stored in File GDB (for example

c:\data\myData.gdb\input"). The output is specified in a similar way (for example

c:\data\myData.gdb\output.")

Supports Z and M (measures) and is suitable for representing 3D geometries and used in

linear referencing tasks.

Supports true curves. The current version of GDAL (2.1) cannot read true curves stored in

File GDB. As a result ET GeoWizards 12.0 does not support true curves.

ET GeoWizards will read File Geodatabases created with ArcGIS 10.0 and above. Previous

versions are not supported by GDAL.

ET GeoWizards can create a new File GDB

A Feature Dataset is a subfolder in the File GDB folder (for example

c:\data\myData.gdb\myNetwork\layer1"). A Feature Dataset is normally used to group

layers for a specific purpose. With ET GeoWizards it is possible to create a Feature Dataset

and store the output data in it. It is however not recommended (and sometime not possible)

to save output layers in a Feature Dataset created in ArcGIS).

Temporary feature classes.

Many of the functions of ET GeoWizards perform complex spatial operations and in the process need
to create one or more intermediate datasets. The temporary datasets can be stored in Shapefiles or
File GDB. The location (temp folder) for storing temp datasets can be set using the ET GeoWizards

Main Dialog ==> Settings). If the temp folder has not be set Et GeoWizards sets it to
"c:\temp\ET_Temp".

Maintenance of the temp folder

All functions are designed to maintain the ET GeoWizards folder by removing the intermediate

feature classes after completion. In some cases however some of the functions cannot delete the
intermediate datasets. This might cause the size of the temporary folder to grow after long use of the
software. The easiest way to avoid problems with large temp folder is simply to delete the contents of

this folder on regular basis.

Copyright © Ianko Tchoukanski

ET GeoWizards Main Dialog

The Main Dialog of ET GeoWizards gives access to all the functions of the software. Selecting the tab

for specific category of functions will display a list of all functions in this category.Next to each

function there is an icon indicating the status of the function

 indicates that the function is available with no limitations

 indicates that the software is not registered and if you run the function the limitations of

the unregistered software apply

 appears when a licensed (or free) function is selected. Clicking on the icon will execute

the function.

 appears when a non-licensed function is selected. Clicking on the icon will execute the

function with the applicable to the unregistered software limitations.

On the registered software only and icons should appear.

Clicking on the GO button will execute the selected function.

The User Guide is embedded in the main dialog - whenever you select a function, the Help Window
will display the appropriate help topic. You can use the Help button to hide or show the Help Window.

The View Log button displays the entries recorded in the ET GeoWizards log file. The dialog allows

deleting the current entries. It is recommended to clean the log file on regular intervals.

The settings button opens the settings dialog of ET GeoWizards. On this dialog you can view the
current temp folder (where all intermediate datasets created by the functions of ET GeoWizards are

stored) or set a new folder to be used for such purposes. ET GeoWizards cleans the temp folder
automatically, but it is a good practice to delete all the contents of this folder from time to time.

Copyright © Ianko Tchoukanski

Spatial Join

Running programmatically

Joins the attributes of the Join Layer to the attribute table of the Target Layer based on spatial
location.

Inputs:

Target Dataset - Point, Multipoint, Polyline or Polygon

Join Dataset - Point, Multipoint, Polyline or Polygon

Join Type

Join Type = "One To Many" - one feature from the Join Dataset can be joined to

many features of the target dataset, but each feature from the Target Dataset will

receive the attributes of only ONE of the features from the Source Dataset:

Point to Polygon - the polygon will get the attributes of the deepest point

inside the polygon (farthest to the polygon boundary) or if there is no

point inside the closest point to the polygon (within the search tolerance)

Example: Points to Polygons - Search Tolerance = 0

Point to Point, Point To Polyline, Point To Multipoint - the target will get

the attributes of the closest polyline

Polyline to Polygon - the polygon will get the attributes of the polyline

with the longest intersection with the polygon or if there is no intersecting

polyline the closest polyline to the polygon (within the search tolerance)

Example: Polylines to Polygons - Search Tolerance = 0

Polyline to Point, Polyline To Polyline, Polyline To Multipoint - the target

will get the attributes of the closest point

Polygon to Point - the point will get the attributes of the polygon:

If the point is within the polygon - the polygon with largest

distance to the boundary

If the point is not in any polygon - the closest polygon within the

search tolerance.

Example: Polygons to Points - Search Tolerance = 0 - Update Rule =
"Sum"

Polygon to Polyline - the polyline will get the attributes of the polygon

with longest intersection. If the polyline does not intersect any polygon -

the closest polygon within the search tolerance.

Polygon to Polygon - the polygon will get the attributes of the polygon

with largest area of intersection. If the polygon does not intersect any

source polygon - the closest polygon within the search tolerance.

Join Type = "Many To Many" - the target feature will get the attributes of all source

features within the search tolerance according to the user specified update rule for

each field to be joined.

Example: Points to Polygons - Search Tolerance = 0

Cut-off distance (Search Tolerance) - the maximum distance for which the attributes of the

features in the Join layer will be joined to the target features (in the units of the spatial

reference of the Target Dataset)

Join Fields - the fields from the Join Layer that will be added to the Target layer. If the Join

Type is "One To Many" - the values of the joined feature will be stored. If the Join Type is

"Many To Many" - the values for each joined field will be added according to the user

defined update rules.

Keep All Target Features - if selected all features of the target layer will be exported to the

output dataset. If not selected only the target features that were joined to the source

features will be saved in the output. This option is only valid to "One To Many" Join Type. If

the Join Type is "Many To Many", all features of the target dataset are preserved.
Example: Points to Polygons - Search Tolerance = 0 Keep All Target Features = FALSE.

The feature with no joins is missing in the output.

Add statistics fields - used only if the Join Type is "Many To Many". Statistcs for the Spatial

Join will be added to the output attribute table depending on the type of the Target and

Source datasets

[ET_Count] - the number of source features joined to the target feature.

[ET_CountIn] - if the target is polygon or polyline - the number of the joined

features that intersect each target feature. Note that if the search tolerance is

larger than 0 the number of the joined features might be larger than the number of

intersecting features

[ET_LengthIn] - if the target is polygon and the source polyline - the sum of the

length of the polylines intersecting the target polygon

[ET_LengthIn] - if the target and the source are polygons - the sum of the area of

the polygons intersecting the target polygon

Outputs:

New layer

The attributes of the target layer will be preserved in the output dataset

The join fields from the Source layer will be added to the output and the values will be

populated as described above

If Add statistics fields = TRUE, statistics fields will be added to the output and the values will

be populated as described above

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

SpatialJoin

<Target

Dataset>

A String representing the target layer.

<Join

Dataset>

A String representing the join layer.

<output

dataset>

A String - the full name of the output layer.

< Join Type> A String representing the Join Type to be used. Valid values: "OneToMany" and

"ManyToMany"

<CutOff

Distance>

A Double representing the Cut-Off Distance to be used. The units of the

tolerance are the units of spatial reference of the Target Dataset

<Join

Fields<

A String representing a list (separator ";") of the fields to transfer together with

the method for each field. Valid values - "Sum", "Max", "Min" for number fields

and "First", "Last" for string fields. Example: "Field1 Sum; Field2 First; Field3

Min"

{Keep All} A Boolean indicated whether to keep all target features - see explanation

above.

{Add

Statistics}

A Boolean indicated whether to add statistics fields - see explanation above.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "SpatialJoin", "Target Dataset", "Join Dataset",

"output dataset", " Join Type", "CutOff Distance", "Join Fields", "Keep All",

"Add Statistics"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "SpatialJoin" "Target Dataset" "Join Dataset" "output

dataset" "Join Type" "CutOff Distance" "Join Fields" "Keep All" "Add Statistics"

.NET using

ETGWOutX.dll

SpatialJoin(Target Dataset,Join Dataset, output dataset, Join Type, CutOff

Distance,Join Fields,Keep All,Add Statistics)

ArcPy arcpy.SpatialJoin(Target Dataset, Join Dataset, output dataset, "Join Type",

"CutOff Distance", "Join Fields","Keep All", "Add Statistics")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Near Feature

Running programmatically

Calculates the distance for each feature of the Input dataset to the closest feature from the Near
dataset. In the attribute table of the output the distance is recorded together with the ID of the closest

feature.

Inputs:

Input Dataset - Point, Multipoint, Polyline or Polygon

Near Dataset - Point, Multipoint, Polyline or Polygon

Search tolerance - the maximum distance to search for features in the near layer in the units

of the spatial reference of the Input Dataset

Outputs:

New layer. The attribute table of the resulting feature class will have two new fields

[ET_Dist] - the distance from the input feature to the closest feature from the near layer

[ET_Closest] - the ID of the closest feature from the near layer

Notes:

If the distance from an input feature to the closest feature from the distance layer is larger

than the Search Tolerance then the [ET_Dist] and [ET_Closest] will have a value of -1

If an input feature intersects several features from the near dataset an arbitrary feature from

the intersecting near features will be assigned as closest and the distance will be assigned

to 0.

If the input layer and the near layer have different Spatial References the distance is

calculated in the Spatial Reference of the data input dataset.

Keep Input Spatial Reference - If selected the output will have the spatial reference of the

input dataset, else the spatial reference of the near dataset will be used

Examples:

Input Dataset - Polygons ; Near Dataset - Polylines

Input Dataset - Polylines ; Near Dataset - Polygons

Input Dataset - Points ; Near Dataset - Polylines

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function Name NearFeature

<input dataset> A String representing the input layer.

<Near Dataset> A String representing the reference layer.

<output dataset> A String - the full name of the output layer.

< CutOff

Distance>

A Double representing the Cut-Off Distance to be used. The units of the

tolerance are the units of spatial reference of the input dataset if

KeepSourceSref = TRUE. Otherwise - the units of spatial reference of the

Near Dataset.

{KeepSourceSref} A Boolean indicating whether the output to have the spatial reference of

the input layer. If False or 0, the spatial reference of the reference layer will

be used.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "NearFeature", "input dataset", "Near Dataset",

"output dataset", " CutOff Distance", "KeepSourceSref"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "NearFeature" "input dataset" "Near Dataset" "output

dataset" "CutOff Distance" "KeepSourceSref"

.NET using

ETGWOutX.dll

NearFeature(input dataset,Near Dataset, output dataset, CutOff Distance,

KeepSourceSref)

ArcPy arcpy.NearFeature(input dataset, Near Dataset, output dataset, "CutOff

Distance" , "KeepSourceSref")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Spider Diagram

Running programmatically

Creates a polyline feature class representing the shortest distance between centers (point dataset)
and Destinations (Point, Polyline or Polygon datasets). The Destinations are allocated to the closest

Center.

Inputs:

Point feature layer representing the Centers

Point, Polyline or Polygon layer representing the destinations

Cutoff distance - the maximum distance between a Center and a Destination to be used.

Destinations that a further than this distance from any Center will not be assigned to a

Center

Output Spatial Reference from Centers or Destinations

Outputs:

New Polyline feature class. The attribute table of the resulting feature class will have three

new fields

[Center_ID] - the Feature ID of the Center point

[Dest_ID] - the Feature ID of the Destination feature

[ET_Dist] - the distance from the Center to the Destination

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function Name SpiderDiagram

<Centers

Dataset>

A String representing the input layer. Must be of Point type.

<Destinations

Dataset>

A String representing the reference layer. Must be of Polyline type

<output dataset> A String - the full name of the output layer.

< CutOff

Distance>

A Double representing the Cut-Off distance to be used. The units of the

tolerance are the units of spatial reference of the Centers Dataset if

KeepSourceSref = TRUE. Otherwise - the units of spatial reference of the

Destinations Dataset.

{KeepSourceSref} A Boolean indicating whether the output to have the spatial reference of

the input layer. If False or 0, the spatial reference of the reference layer will

be used.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "SpiderDiagram", "Centers Dataset",

"Destinations Dataset", "output dataset", " CutOff Distance",

"KeepSourceSref"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "SpiderDiagram" "Centers Dataset" "Destinations

Dataset" "output dataset" "CutOff Distance" "KeepSourceSref"

.NET using

ETGWOutX.dll

SpiderDiagram(Centers Dataset,Destinations Dataset, output dataset, CutOff

Distance, KeepSourceSref)

ArcPy arcpy.SpiderDiagram(Centers Dataset, Destinations Dataset, output dataset,

"CutOff Distance", "KeepSourceSref")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Spider Diagram Attribute Link

Running programmatically

Creates a Spider Diagram between the points of a Center Points dataset and the features in the
destination layer (points, polygons, or polylines) based on the values in the link fields in both

datasets. The created polylines will connect the Centers to the destination features if the values in the
link fields are the same.

Inputs:

Point dataset representing the Centers.

Link field in the input point dataset.

Point, Polyline or Polygon layer representing the destinations.

Link field in the destination dataset.

Optional - Depending on the type of the destination dataset the connector line is created

between

Point - Center Point - Destination point

Multipoint - Center Point - Closest Destination point

Polyline - Center Point - Closest point on the polyline

Polygon - Center Point - Closest point on the polygon boundary

Optional - Cutoff distance - the maximum distance between a Center and a Destination to

be used. Destinations that a further than this distance from any Center will not be connected

to a Center

Outputs:

New Polyline feature class with single segmented polylines. The attributes of the centers

dataset will be preserved

Notes:

The spatial references of both input dataset must have the same geographic coordinate

system.

The output spatial reference is the one of the Centers dataset if Keep Centers Sref is

TRUE

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function Name SpiderDiagramAttributeLink

<Centers

Dataset>

A String representing the input layer. Must be of Point type.

<Destinations

Dataset>

A String representing the reference layer. Must be of Polyline type

<output dataset> A String - the full name of the output layer.

<Centers Link> A String - the name of the link field from the Centers Dataset.

<Destinations

Link>

A String - the name of the link field from the Destinations Dataset.

< CutOff

Distance>

A Double representing the Cut-Off distance to be used. The units of the

tolerance are the units of spatial reference of the Centers Dataset if

KeepSourceSref = TRUE. Otherwise - the units of spatial reference of

the Destinations Dataset.

{KeepSourceSref} A Boolean indicating whether the output to have the spatial reference of

the input layer. If False or 0, the spatial reference of the reference layer

will be used.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "SpiderDiagramAttributeLink", "Centers

Dataset", "Destinations Dataset", "output dataset", "Centers Link"

"Destinations Link" "CutOff Distance", "KeepSourceSref"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "SpiderDiagramAttributeLink" "Centers Dataset"

"Destinations Dataset" "output dataset" "Centers Link" "Destinations Link"

"CutOff Distance" "KeepSourceSref"

.NET using

ETGWOutX.dll

SpiderDiagramAttributeLink(Centers Dataset,Destinations Dataset, output

dataset, Centers Link ,Destinations Link, CutOff Distance,

KeepSourceSref)

ArcPy arcpy.SpiderDiagramAttributeLink(Centers Dataset, Destinations Dataset,

output dataset, "Centers Link", "Destinations Link", "CutOff Distance",

"KeepSourceSref")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a
space, you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Allocation

Running programmatically

Allocates a set of demand points (Customers) to user specified number of supply points (Facilities)
out of a Facilities point dataset based on the Euclidian distance between the Customers and

Facilities. In other words the function selects N Facilities out of K candidates to service a set of M
Customer locations in such a way that each Customer is allocated to a single Facility (based on
Euclidean distance) and the total distance between the Customers and selected Facilities is

minimized.

The function uses heuristic vertex substitution algorithm modified from Teitz and Bart (1968) and can
handle comparatively large problems (Number of Customers * Number Facilities < 5 Million)

Inputs:

Point feature layer representing the Facilities (Centers).

Facility name field (optional) - the values in this field are used to identify the facilities. If the

field is not specified the FID will be used as a name

Facility type field (optional) - the values of this field indicate whether a specific facility must

be included in the selected set of facilities. Values of "1", "Required", "Existing" will force the

inclusion of the Facility in the selected set of facilities. If the field is not specified all facilities

will be considered as equal in the selection algorithm.

Point feature layer representing the customers (demand points) that need to be allocated to

the facilities.

Customer name field (optional) - the values in this field are used to identify the facilities. If

the field is not specified the FID will be used as a name

Number of facilities to be selected.

Cutoff distance (optional) - the maximum distance between a Facility and a Customer to be

used. Note that some customers might not be allocated if too small cutoff distance is used.

Outputs:

New Point layer containing only the selected facilities. The attribute table of the resulting

feature class will have the following fields

FacilityID - The original FID of the selected facility

Facility - The value in the user specified Name field of the selected facility

Type - the type of the facility - Selected or Fixed (if the facility was indicated as

fixed in the input facilities dataset.

Num_Alloc - Number of customers allocated to this facility

Max_Dist - The distance to the farthest customer from this facility.

Total_Dist - The sum of the distances to all allocated cutomers.

New Polyline feature class with lineslinking selected facilities to allocated to them

customers. The attribute table of the resulting feature class will have the following fields

FacilityID - The original FID of the selected facility

CustomerID - The original FID of the customer

Facility - The value in the user specified Name field of the selected facility

Customer - The value in the user specified Name field of the customer

ET_Dist - The distance between the selected facility and the allocated customer

Illustration:

Input Facilities and Customers - No required facilities

Result (Selected facilities in green)

Input Facilities and Customers - Two required facilities

Result (Selected facilities in green)

Notes:

The output spatial reference will be the one of the Facilities dataset

The function has a restrictions and should not be applied if Number of Customers * Number

Facilities > 5 Million

References:

M.B. Teitz and P. Bart, Heuristic methods for estimating the generalized vertex median of a

weighted graph. Gpns. Res. 16,

955-961 (1968).

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

Allocate

<facilities

dataset>

A Point layer - the candidate facilities.

<customers

dataset>

A Point feature class or feature layer - the Customers (demand points).

<out link

layer>

A String - the full name of the output link layer

<out facilities

layer>

A String - the full name of the output selected facilities feature class

<number

facilities>

An integer - the number of facilities to be selected

 {facility

name field}

A String representing a field name - the values in this field are used to identify

the facilities.

 {facility type

field}

A String representing a field name - the values in this field are used to identify

the type of the facilities.

 {customer

name field}

A String representing a field name - the values in this field are used to identify

the customers.

{Cutoff

distance}

A number - the maximum distance between a Facility and a Customer to be

used.The units of the tolerance are the units of spatial reference of the facilities

dataset if KeepSourceSref = TRUE. Otherwise - the units of spatial reference of

the customers dataset.

{Keep

Customers

Sref}

A Boolean indicating whether the output to have the spatial reference of the

customers layer. If False or 0, the spatial reference of the facilities layer will be

used.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "Allocate", "facilities dataset", "customers

dataset", "out link layer", " out facilities layer", "number facilities", "facility

name field", "facility type field","customer name field","Cutoff distance

","KeepSourceSref"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "Allocate" "facilities dataset" "customers dataset" "out

link layer" "out facilities layer" "number facilities" "facility name field" "facility

type field" "customer name field" "Cutoff distance " "KeepSourceSref"

.NET using

ETGWOutX.dll

Allocate(facilities dataset,customers dataset, out link layer,out facilities layer,

number facilities, facility name field, facility type field, customer name field,

Cutoff distance KeepSourceSref)

ArcPy arcpy.Allocate(facilities dataset,customers dataset, out link layer,out facilities

layer, number facilities, facility name field, facility type field, customer name

field, Cutoff distance KeepSourceSref)

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Build Thiessen Polygons

Running programmatically

Builds Thiessen Polygons from a feature layer

Thiessen (Voronoi) polygons define individual areas of influence around each of a set of points.

Thiessen polygons are polygons whose boundaries define the area that is closest to each point
relative to all other points. They are mathematically defined by the perpendicular bisectors of the lines
between all points

Inputs:

A feature layer (Point, Multipoint, Polyline, Polygon)

Outputs:

New polygon layer.

If the Attach attributes option is selected, the attributes of the source features are

transferred to the new attribute table.

Notes :

By default the Thiessen polygons are clipped to the extents of the input features. There is

an option to buffer the extents rectangle before clipping with it.

The resulting feature class can be clipped (Clip Layer Wizard) with any polygon layer to

mach the shape of this layer.

The function should work with no problems on datasets with up to 6 million points.

Examples of use:

Defining trade areas

From a set of soil sampling points to define non overlapping polygons for each soil type

Example:

Thiessen - Buffer Distance = 0

Thiessen - Buffer Distance > 0

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

BuildThiessen

<input

dataset>

A String representing the input layer. Must be of Polygon type.

<output

dataset>

A String - the full name of the output layer.

{Buffer

Distance}

A Double representing the distance to buffer the input extent (in the units of the

spatial reference of the input dataset.

{Add

Attributes}

A Boolean that indicates whether the attributes of the input features are to be

transfered to the thiessen polygons.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "BuildThiessen", "input dataset", "output

dataset", "Buffer Distance", "Add Attributes"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "BuildThiessen" "input dataset" "output dataset" "Buffer

Distance" "Add Attributes"

.NET using

ETGWOutX.dll

BuildThiessen(input dataset, output dataset, Buffer Distance, Add Attributes)

ArcPy arcpy.BuildThiessen(input dataset, output dataset, "Buffer Distance", "Add

Attributes")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Create Concave Hull

Running programmatically

The Concave Hull function creates a polygon that represents the area occupied by a set of data
points.

The resulting polygon might be concave or convex

Convex

Non Convex (Concave)

A Concave hull describes better the shape of the point cloud than the convex hull

Convex Hul

Concave Hull

Many solutions are possible for the same input data. The result depends on the user

defined distance threshold. The larger the threshold, the closer the resulting polygon will be

to the Convex Hull.

Source Data

Convex Hull

Concave Hull 1

Concave Hull 2

Inputs:

A feature layer (Point, Multipoint, Polyline, Polygon)

Distance threshold - in the units of the spatial reference of the input dataset

Outputs:

New polygon layer.

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

CreateConcaveHull

<input

dataset>

A String representing the input layer. Must be of Polygon type.

<output

dataset>

A String - the full name of the output layer.

<Distance

Treshold>

A Double representing the threshold for creating a concave hull - in the units of

the spatial reference of the input dataset.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "CreateConcaveHull", "input dataset", "output

dataset", "Distance Treshold"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "CreateConcaveHull" "input dataset" "output dataset"

"Distance Treshold"

.NET using

ETGWOutX.dll

CreateConcaveHull(input dataset, output dataset, Distance Treshold)

ArcPy arcpy.CreateConcaveHull(input dataset, output dataset, "Distance Treshold")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Build Convex Hull

Running programmatically

Builds the Convex Hull of the features of a layer

Convex hull is a polygonal area that is of smallest length and so that any pair of points within the area

have the line segment between them contained entirely inside the area.

Convex

Non Convex (Concave)

Defining the convex Hull of a set of points is useful, for example in the case of enclosing the points,
using a fence of shortest total length.

Source Data

Convex Hull

While in general the Convex Hull is good to describe the shape of the input data points, in many

cases a polygon that describes better the region occupied by the point cloud is needed. See the
Create Concave Hull function

Convex Hull

Concave Hull

Inputs:

A feature layer (Point, Multipoint, Polyline, Polygon)

Outputs:

New polygon layer.

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

ConvexHull

<input

dataset>

A String representing the input layer.

<output

dataset>

A String - the full name of the output layer.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program

Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "ConvexHull", "input dataset", "output dataset"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "ConvexHull" "input dataset" "output dataset"

.NET using

ETGWOutX.dll

ConvexHull(input dataset, output dataset)

ArcPy arcpy.ConvexHull(input dataset, output dataset)

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Transfer Polyline Attributes

Running programmatically

Transfers the attributes from one polyline layer to another based on the spatial relations of the
polylines. Suitable for transfering the attributes between two polyline datasets that represent the

same phenomenon - for example between existing street dataset with complete attributes and newly
captured (spatially better) data for the sme location but with no attributes.

Inputs:

Target polyline layer.

Polyline layer source for the attribute data.

Search tolerance.

Fields to be transfered from the source to the target dataset.

Outputs:

New Polyline feature class

Notes:

The spatial references of both input dataset must have the same geographic coordinate

system.

The output spatial reference is the one of the Target dataset

Example:

Source Dataset -red and Target Dataset - green

Source Dataset -red - black labels and Output Dataset - green - red labels

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function TransferPolylineAttributes

Name

<Target

Dataset>

A String representing the target layer. Must be of Point type.

<Source

Datasett>

A String representing the source layer. Must be of Polyline type

<output

dataset>

A String - the full name of the output layer.

<Search

Tolerance>

A Double representing the serch tolerance in the units of the spatial reference

of the target dataset.

{Transfe

Fields}

A String - representing a list (separator - ";") of field names to be transfered. If

missing - all attributes of the source dataset will be transfered to the target.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "TransferPolylineAttributes", "Target Dataset",

"Source Datasett", "output dataset", "Search Tolerance" "Transfe Fields"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "TransferPolylineAttributes" "Target Dataset" "Source

Datasett" "output dataset" "Search Tolerance" "Transfe Fields"

.NET using

ETGWOutX.dll

TransferPolylineAttributes(Target Dataset,Source Datasett, output dataset,

Search Tolerance ,Transfe Fields)

ArcPy arcpy.TransferPolylineAttributes(Target Dataset, Source Datasett, output

dataset, "Search Tolerance", "Transfe Fields")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Find Closest Point

Running programmatically

Calculates the distance for each point of a point dataset to the closest point from the same dataset.
The function produces similar results as the Closest Feature Distance, but uses a robust algorithm

and can be applied on datasets containing up to 8 million points.

Inputs:

A Point feature layer

Cutoff distance - the maximum distance to search for neighbor points.

Outputs:

A new Point feature class. The attribute table of the resulting feature class will have three

new fields

[ET_ID] - the ID of the feature

[ET_Dist] - the distance from the point to the closest point.

[ET_Closest] - the ID of the closest point.

Notes:

If the distance from a point to the closest point is larger than the Cutoff distance then the

[ET_Dist] will have a value of 0 and [ET_ Closest] will have a value of -1

If there are coincident points in the input dataset, only one of the coincident point will be

assigned a closest neighbor. The other points in the same location will have values ET_Dist

= 1 and ET_Closest = -1

The bigger the search tolerance is, the slower the process will be

The distance is calculated in the units of the Spatial Reference of the input dataset

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

FindClosestPoint

<input

dataset>

A String representing the input layer. Must be of Point type.

<output

dataset>

A String - the full name of the output layer.

<CutOff

Distance<

A Double representing the maximum distance between two points to be

considered neghbors - in the units of the spatial reference of the input dataset.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "FindClosestPoint", "input dataset", "output

dataset", "CutOff Distance"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "FindClosestPoint" "input dataset" "output dataset"

"CutOff Distance"

.NET using

ETGWOutX.dll

FindClosestPoint(input dataset, output dataset,CutOff Distance)

ArcPy arcpy.FindClosestPoint(input dataset, output dataset,CutOff Distance)

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Connect To Closest Point

Running programmatically

Creates an output polyline layer with single segmented polylines that connect each point of the input
Point layer to it's closest neighbor. The function uses a robust algorithm and can be applied on

datasets containing up to 2 million points.

Inputs:

A Point feature layer

Cutoff distance - the maximum distance to search for neighbor points.

Add Duplicate Links option (see notes below)

Outputs:

A new Polyline layer. The attribute table of the resulting layer will have three new fields

[ET_From] - the ID of the FROM point

[ET_To] - the ID of the TO point

[ET_Dist] - the distance from the point to the closest point

Notes:

If the distance from a point to the closest point is larger than the Cutoff distance then no link

will be created between the two points

If there are coincident points in the input dataset, the duplicates will be ignored.

The direction of the resulting polyline is always from the evaluated point to the closest point

found.

If there are 2 points "A" and "B" where point "B" is the closest neighbor of point "A" and point

"A" is the closest neighbor of point "B"

If the Add Duplicate Links option is selected, the resulting feature class will have 2

duplicate links - one from "A" to "B and one from "B" to "A"

If the Add Duplicate Links option is NOT selected, then only one of the two links

will be stored in the output.

Examples:

Result Dataset - Add Duplicate Links option NOT selected

The closest point to point 8 is point 10.

The closest point to point 10 is point 8

Only one link is added - from point 8 to point 10

Result Dataset - Add Duplicate Links option NOT selected

The closest point to point 8 is point 10.

The closest point to point 10 is point 8

Two coincident links are added - from point 8 to point 10 and from point 10 to point 8

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

ConnectToClosestPoint

<input

dataset>

A String representing the input layer. Must be of Point type.

<output

dataset>

A String - the full name of the output layer.

<CutOff

Distance>

A Double representing the CutOff Distance(in the units of the spatial reference

of the input dataset).

{Add

Duplicates}

A Boolean indicating whether duplicate links will be added to the result.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "ConnectToClosestPoint", "input dataset",

"output dataset", "CutOff Distance", "Add Duplicates"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "ConnectToClosestPoint" "input dataset" "output

dataset" "CutOff Distance" "Add Duplicates"

.NET using

ETGWOutX.dll

ConnectToClosestPoint(input dataset, output dataset, CutOff Distance, Add

Duplicates)

ArcPy arcpy.ConnectToClosestPoint(input dataset, output dataset, "CutOff

Distance", "Add Duplicates")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Connect Unstructured Points

Running programmatically

Connects each point of a point dataset to its closest neighbors to create polylines. The function does
not require attributes that define which points should pertain to a single polyline or order of the points

within the polylines (if your point data has such attributes use the Point To Polyline function instead).
The function uses a robust algorithm and can be applied on datasets containing up to 2 million points.

Inputs:

A Point feature layer

Cutoff distance - the maximum distance to search for neighbor points.

Avoid Loops option (see notes and examples below)

Outputs:

A new Polyline feature class.

Notes:

If the distance from a point to the closest point is larger than the Cutoff distance then no link

will be created between the two points

If there are coincident points in the input dataset, the duplicates will be ignored.

If the Avoid Loops option is not selected each point will be connected to its 2 closest

neighbors (provided that the distance between the point and the neighbors is less than the

Cutoff distance)

If the Avoid Loops option is selected, the function will try to create longest non intersecting

polyline possible.

Examples:

Source Points

Result - Avoid Loops = False

Result - Avoid Loops = True

Tolerance 1

Tolerance 2

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

ConnectUnstructuredPoints

<input

dataset>

A String representing the input layer. Must be of Point type.

<output

dataset>

A String - the full name of the output layer.

<CutOff

Distance>

A Double representing the CutOff Distance(in the units of the spatial reference

of the input dataset).

{Avoid

Loops}

A Boolean. If TRUE the algorithm will try to remove the loops created by

connecting to closest neighbor

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "ConnectUnstructuredPoints", "input dataset",

"output dataset", "CutOff Distance", "Avoid Loops"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "ConnectUnstructuredPoints" "input dataset" "output

dataset" "CutOff Distance" "Avoid Loops"

.NET using

ETGWOutX.dll

ConnectUnstructuredPoints(input dataset, output dataset, CutOff Distance,

Avoid Loops)

ArcPy arcpy.ConnectUnstructuredPoints(input dataset, output dataset, "CutOff

Distance", "Avoid Loops")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Create Cluster Polygons S

Running programmatically

Delineates cluster polygon for the input points based on user specified cluster distance.

Inputs:

A Point feature layer.

Cluster Tolerance - in the units of the spatial reference of the input dataset.

Holes/No Holes option

Outputs:

New polygon layer.

Notes:

The algorithm starts from a random point and if finds 2 points closer than the Cluster

Tolerance to the start point creates an initial cluster polygon. As long as there is another

point closer to the initial cluster polygon, it is joined to it. The function is suitable for creating

elongated clusters for points representing linear spatial phenomenon.

See also the ClusterPolygonsC function which uses a different algorithm and creates Center

based clusters.

Examples:

Source Points

Cluster Polygons 1

Cluster Polygons 1 overlaid with the source points

Cluster Polygons 2

Cluster Polygons 2 overlaid with the source points

Cluster Polygons 3 (No Holes option selected)

Cluster Polygons 3 overlaid with the source point

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

PointsToClusterPolygonsS

<input

dataset>

A String representing the input layer. Must be of Point type.

<output

dataset>

A String - the full name of the output layer.

<Cluster

Tolearance>

A Double representing the Cluster Tolearance(in the units of the spatial

reference of the input dataset).

{Remove

Holes}

A Boolean indicating whether the function to remove the holes created during

the interpolation.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program

Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "PointsToClusterPolygonsS", "input dataset",

"output dataset", "Cluster Tolearance", "Remove Holes"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "PointsToClusterPolygonsS" "input dataset" "output

dataset" "Cluster Tolearance" "Remove Holes"

.NET using

ETGWOutX.dll

PointsToClusterPolygonsS(input dataset, output dataset, Cluster Tolearance,

Remove Holes)

ArcPy arcpy.PointsToClusterPolygonsS(input dataset, output dataset, "Cluster

Tolearance", "Remove Holes")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Create Cluster Polygons C

Running programmatically

Delineates cluster polygon for the input points based on user specified cluster distance.

Inputs:

A Point feature layer.

Cluster Tolerance - in the units of the spatial reference of the input dataset.

Cluster Polygon Type

Outputs:

New polygon layer.

Notes:

The algorithm tries first to find the centers for the clusters of points and then assigns to

these centers the points located within the cluster tolerance.

See also the ClusterPolygonsS function which uses a different algorithm and is able to

create elongated clusters.

Examples:

Convex Clusters

Concave Conservative Clusters

Concave Aggresive Clusters

Examples ClusterPolygonsC vs. ClusterPolygonsS:

Cluster C 1

Cluster S 1

Cluster C 2

Cluster S 2

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

PointsToClusterPolygonsC

<input

dataset>

A String representing the input layer. Must be of Point type.

<output

dataset>

A String - the full name of the output layer.

<Cluster

Tolearance>

A Double representing the Cluster Tolearance(in the units of the spatial

reference of the input dataset).

<Polygon

Type>

A String indicating the type of cluster polygons to be created. Valid options -

"Convex","ConcaveC" - conservative, "ConcaveA" - aggressive.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "PointsToClusterPolygonsC", "input dataset",

"output dataset", "Cluster Tolearance", "Polygon Type"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "PointsToClusterPolygonsC" "input dataset" "output

dataset" "Cluster Tolearance" "Polygon Type"

.NET using

ETGWOutX.dll

PointsToClusterPolygonsC(input dataset, output dataset, Cluster Tolearance,

Polygon Type)

ArcPy arcpy.PointsToClusterPolygonsC(input dataset, output dataset, "Cluster

Tolearance", "Polygon Type")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Google Earth General

Google Earth is a powerful tool for viewing, creating and sharing GIS data. The latest improvements
in the KML format allow storing attributes as structured data, which makes possible exchange and
even editing of GIS data using Google Earth. Google Earth comes in four different versions (from

Free to Enterprise). Make sure to read the Google Earth license agreement before using it.

What is KML

Keyhole Markup Language (KML) is an XML - based language for managing the display of geo
spatial data in Google Maps and Google Earth. Since a KML file is a text file, its size might become

quite large. Google Earth also takes a lot of RAM when large KML files are loaded. If possible split
your datasets to subsets before converting them to KML.

What is KMZ

The compressed version of the KML with the extension KMZ. Actually this is a zipped archive and the

contents can be extracted with any zip program. A KMZ file can contain one or more KML files
together with images etc. The export function of ET GeoWizards expect a full file name (with the
extension). The extension of the output file defines whether the file will be compressed (KMZ) or not

(KML)

Google Earth version

ET GeoWizards exports KML version 2.2 files (this is the KML version which introduced support for
attributes called in KML "ExtendedData"). Since it is impossible to find out which exactly version of

Google Earth starts supporting KML 2.2, we recommend using Google Earth 4.2 or above.

Google Earth projection

For its reference system, KML uses Geographic Coordinate System (GCS) with WGS84 datum. In
ArcGIS this projection is called GCS_WGS_1984. The export to Google Earth functions of ET

GeoWizards project the data on the fly to GCS_WGS_1984. If the source data is in a projection that
have different datum, the functions of ET GeoWizards do on the fly geographic transformations on the
data.

If the input data does not have a projection associated with it or have so called "Unknown"

coordinate system, the data cannot be exported to KML.

If the export functions cannot find an appropriate geographic transformation to project the

input data to GCS_WGS_1984, they will not export the data. This might happen if the input

data is in a very specific or outdated projection.

Consideration when exporting to Google Earth

The export function of ET GeoWizards supports multipart features, which are exported as

MultiGeometry in the KML file. These features will consist of several not connected geometries

1.

http://earth.google.com/download-earth.html

and will have a single label point. If the same features are imported back, each geometry will

be created as a single part feature with the same attributes.

The export functions of ET GeoWizards allow creating Labels for each Polyline and Polygon

features. The Labels are created as follows:

For polygons - the label points of the polygons.

For polylines - the middle point of the polyline

Using Labels is convenient way to display the name of a polyline or polygon feature. Since
Labels are part of the feature they are also linked to the feature attributes, which can be
displayed by clicking on the Label as well as by clicking on the feature.

Point features are always labelled and the user can not turn the label option off.

2.

Point Symbols. ET GeoWizards uses a set of the standard Google Earth marker symbols to

display point features and Labels for polyline and polygon features. The user can select the

marker to be used for each feature class. The symbols that can be used are:

The size and the color of the symbols are taken from:

Size - assigned by the user

Color - randomly assigned

3.

Exporting elevations: The export functions of ET GeoWizards allow three ways of exporting Z

values for the features.

Z values from geometry - Only available if the exported dataset to be exported has Z

values (PointZ, PolylineZ, PolygonZ).

Z values from a field - A numeric field is required

Constant Z values for all features

Note that Google Earth uses elevation values in Meters. If the Z values of the dataset are in
Feet, the user needs to indicate this in the export procedure.

4.

Representation of the elevations in Google Earth:

Z Type - how the Z values will be interpreted by Google Earth

Absolute - Sets the altitude of the coordinate relative to sea level,

regardless of the elevation of the Google Earth terrain beneath the feature.

Relative - Sets the altitude of the feature relative to the Google Earth terrain

in a particular location.

NONE - the Z values are ignored - the feature will be displayed on the

Google Earth surface

Extrusion - Specifies whether to connect the geometry to the ground.

Attributes. All attributes of the features are exported and can be displayed in Google Earth. To

display the attributes select the feature or its Label point.

5.

Google and Google Earth are trademarks of Google Inc

Copyright © Ianko Tchoukanski

Export To Google Earth

Running programmatically

Converts a feature class to a Google Earth KML or KMZ file. Available only in the ToolBox
implementation

Inputs:

A dataset - Point, Polyline or Polygon

The appearance of the data in Google Earth can be customized using the parameters

described below

Outputs:

A KML or KMZ file redy to be loaded in Google Earth.

See important information here

The attributes of the input data set are added to the output KML.

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

ExportToGoogle

<input

dataset>

A feature layer

<out file> A String - the full name of the output Google Earth file. The extension (KML or

KMZ) is required and will define whether the result will be compressed (KMZ)

or not (KML).

{KML A String that will be used for a general description of the KML file.

Description}

{label field} A String representing a field name. The values in this field will be used for

naming the Google Earth features.

{transparency} A Double indicating the transparency to be used. 0 = Opaque, 100 = invisible

{Z Source} A String indicating what will be the source for the elevation values. Valid

strings:

"Z" - Z values from geometry - Only if the exported dataset to be

exported has Z values (PointZ, PolylineZ, PolygonZ).

"Field " - Z values from a field - A numeric field is required

"Constant" - constant Z values for all features

{z field} A String representing a field name (numeric field). If the Z Source = "Field ",

the values in this field will be used to get the Z values.

{z constant} A Double representing the Z values for all features if Z Source = "Constant"

{z units} A String indicating the units of the Z values of the input dataset. Valid strings -

"Meters" and "Feet".

{z type} A String indicating how the Z values will be interpreted. Valid strings:

"Absolute" - Sets the altitude of the coordinate relative to sea level,

regardless of the elevation of the Google Earth terrain beneath the

feature.

"Relative" - Sets the altitude of the feature relative to the Google

Earth terrain in a particular location.

"None" - the Z values are ignored - the feature will be displayed on

the Google Earth surface.

{extrude

geometries}

A Boolean indicating whether to connect the geometry to the ground.

{fill color} A String indicating the fill color for the polygons and line color for polylines.

Valid values: white, red, gree, blue, cyan, magenta, yellow, black, grey

{line color} A String indicating the outline color for the polygons. Valid values: white, red,

gree, blue, cyan, magenta, yellow, black, grey

{line width} A Double representing the width of the Polyline features and outline width for

Polygon features

{export labels} A Boolean indicating whether labels will be exported as Info-Points.

{info symbol} A String indicating which of the available Google Earth symbols will be used

for displaying Info-Points. The available symbols are above.

{info size} A Double indicating the size of the Icon for the Info-Points. Actually this is a

scale factor for the Google Earth markers - values of 0.5 to 1.5 will give good

results.

{coordinate

precision}

An Integer representing the number of digits after the decimal point for

exported coordinates.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "ExportToGoogle", "input dataset", "out file",

"KML Description", "label field", "transparency", "Z Source", "z field", "z

constant", "z units", "z type", "extrude geometries", "fill color", "line color", "line

width", "export labels", "info symbol", "info size", "coordinate precision"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "ExportToGoogle" "input dataset" "out file" "KML

Description" "label field" "transparency" "Z Source" "z field" "z constant" "z

units" "z type" "extrude geometries" "fill color" "line color" "line width" "export

labels" "info symbol" "info size" "coordinate precision"

.NET using

ETGWOutX.dll

ExportToGoogle(input dataset, out file, KML Description, label field,

transparency, Z Source, z field, z constant, z units, z type, extrude

geometries, fill color, line color, line width, export labels, info symbol, info

size, coordinate precision)

ArcPy arcpy.ExportToGoogle(input dataset, out file, "KML Description", "label field",

"transparency", "Z Source", "z field", "z constant", "z units", "z type", "extrude

geometries", "fill color", "line color", "line width", "export labels", "info symbol",

"info size", "coordinate precision")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Google and Google Earth are trademarks of Google Inc

Copyright © Ianko Tchoukanski

Import from Google Earth

Running programmatically

Converts the feature data contained in a KML or KMZ file to shapefile or File GDB layers

Inputs:

A Google Earth KML or KMZ file

Output workspace - a folder or FileGDB

Notes:

The KML format allows a lot of freedom in the data structure and not all applications that

create KML files structure the data in the same way. This in many cases makes it

impossible to import correctly the data. This is frequently the case with attribute data

exported from GIS formats. Often the attribute data is exported as part of the description

field for a feature. This is usually done in HTML format, which is not structured. KML

Version 2.2 supports structured attribute data through the "ExtendedData" element. The

import function of ET GeoWizards creates attributes based on this element.

KML Version 2.2 supports models, which are 3D objects in their own coordinate space.

Such models are not imported by ET GeoWizards. This includes Google SketchUp models.

ET GeoWizards does not support the "Link" element, which references data in external KML

or KMZ files.

The KML structure does have a definition of the Field Types, but not for the fields width,

precision and scale. General rules are used to create the fields. You can use the Redefine

fields to fix some problems in the field definitions.

See Google Earth general for important additional information.

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

ImportFromGoogle

<Input KML> A String representing the full path to the KML(KMZ) file

<Output

Workspace>

A String - the full path to the output folder or File GDB.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "ImportFromGoogle", "Input KML", "Output

Workspace"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "ImportFromGoogle" "Input KML" "Output Workspace"

.NET using

ETGWOutX.dll

ImportFromGoogle(Input KML, Output Workspace)

ArcPy arcpy.ImportFromGoogle(Input KML, Output Workspace)

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Google and Google Earth are trademarks of Google Inc

Copyright © Ianko Tchoukanski

Generate

Running programmatically

Inputs:

A text file - the format is described below

If the text file contains attributes, the field names are extracted from the first line in the text file. The user has to

specify the type of the fields (String, Integer,Long, Double) , the length and the scale (for double type fields)

The user has to specify what will be the output feature class type

Outputs:

A new feature class

Point, PointZ, PointM

Polyline, PolylineZ, PolylineM

Polygon, PolygonZ, PolygonM

Polygon (from a box type input file)

Notes:

All the non valid records will be ignored

Characters in the coordinate lines or positions

Polylines with less than two coordinate lines

Polygons with less than three coordinate lines

Coordinate entries with less than two coordinates for normal shapes and less than three coordinates for Z or

M shapes

The Polygon options will use only the closed shapes described. If "Force closure" option is used all the shapes that

can be closed will be added to the feature class

If "Attribute" option is used the field names will be extracted from the first non empty line in the text file

Avoid using reserved field names "Shape", "ObjectID" etc.

All the field names longer than 10 characters will be converted to 10 character strings

File formats:

The shapes that have Z or M values will have an additional coordinate

Shape

Type
Standard Format Example Extended Format Example

Point

PointZ

PointM

id,x,y

id,x,y

id,x,y

END

1,34.5,-14.3

2,12.8,-19.6

3,13.4,-25.6

END

ID,X,Y,FIELD,FIELD

id,x,y,value,value

id,x,y,value,value

id,x,y,value,value

END

ID,X,Y,Town,Population

1,34.5,-14.3,London,44

2,12.8,-19.6,Paris,34

3,13.4,-25.6,Madrid,56

END

Polyline

PolylineZ

PolylineM

id

x,y

x,y

END

id

x,y

x,y

x,y

END

END

1

34.5,-14.3

12.8,-19.6

END

2

13.4,-25.6

16.4,-27.6

13.8,-22.1

END

END

ID,FIELD,FIELD

id,value,value

x,y

x,y

END

id,value,value

x,y

x,y

x,y

END

END

ID,Street,Streettype

1,Church,Street

34.5,-14.3

12.8,-19.6

END

2,Second,Avenue

13.4,-25.6

16.4,-27.6

13.8,-22.1

END

END

Polygon

PolygonZ

PolygonM

id,xLabel,yLabel

x,y

x,y

x,y

END

id

x,y

x,y

x,y

END

END

1, 12.5,-18,6

34.5,-14.3

12.8,-19.6

12.43,-19.88

END

2,14.3,24.5

13.4,-25.6

16.4,-27.6

13.8,-22.1

END

END

ID,FIELD,FIELD

id,value,value

x,y

x,y

x,y

END

id,value,value

x,y

x,y

x,y

END

END

ID,X,Y, Dam,Volume

1,12.5,-18,6,Vaal,5346

34.5,-14.3

12.8,-19.6

12.43,-19.88

END

2,14.3,24.5,Gariep,6578

13.4,-25.6

16.4,-27.6

13.8,-22.1

END

END

Box id,xmin,ymin,xmax,ymax

id,xmin,ymin,xmax,ymax

id,xmin,ymin,xmax,ymax

END

1,34.5,-14.3,34.8,-14.1

2,12.8,-19.6,12.9,-19.2

3,13.4,-25.6,13.6,-25.4

END

ID,XMIN,YMIN,XMAX,YMAX,FIELD

id,xmin,ymin,xmax,ymax,value

id,xmin,ymin,xmax,ymax,value

id,xmin,ymin,xmax,ymax,value

END

Running Programmatically

(Go to TOP)

Two different functions are available for the Vector Grid creation

Vector Grid Extent

Parameters

Expression Explanation

Function Name PointGridExtent

<output dataset> A String - the full name of the output layer.

<Shape Type> Required. A String indicating the type of the grid to be created. Valid values:

"Triangle"

"Square"

"Rectangle"

<Has Attributes> A Double - the cell size in X direction.

<Has Z> A Double - the cell size in Y direction.

<Extents From

Reference>

A Boolean indicating whether the extents of the grid will be taken from a reference dataset.

{Reference

Dataset}

A String - the full name of the reference dataset.

{MinX} A Double - minimum X of the extent.

{MinY} A Double - minimum Y of the extent.

{MaxX} A Double - maximum X of the extent.

{MinX} A Double - maximum Y of the extent.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program Files\ETSpatial Techniques\ETGeo
Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "PointGridExtent", "output dataset", "Shape Type", "Has Attributes",

"Has Z", "Extents From Reference", "Reference Dataset"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "PointGridExtent" "output dataset" "Shape Type" "Has Attributes" "Has Z"

"Extents From Reference" "Reference Dataset"

.NET using

ETGWOutX.dll

PointGridExtent(output dataset, Shape Type, Has Attributes, Has Z,Extents From Reference,

Reference Dataset)

ArcPy arcpy.PointGridExtent(output dataset, "Shape Type" , "Has Attributes", "Has Z", "Extents From

Reference", "Reference Dataset")

(Go to TOP)

Vector Grid Origin

Parameters

Expression Explanation

Function Name Generate

<input file> A String - the full name of the input text file.

<output dataset> A String - the full name of the output layer.

<Shape Type> Required. A String indicating the shape type of the data in the text file. Valid values:

"Point"

"Polyline"

"Polygon"

"Box"

"Line"

<Has Attributes> A Boolean indicating whether the input data contains attributes.

{Has Z} A Boolean indicating whether the input data has Z values.

{Has M} A Boolean indicating whether the input data has M valuess.

{Reference

Dataset}

A String - the full name of the reference dataset.

{Force Closure} A Boolean indicating whether to close unclosed polygons (only if the Shape Type = "Polygon").

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program Files\ETSpatial Techniques\ETGeo
Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "Generate","input file", "output dataset", "Shape Type", "Has

Attributes", "Has Z","Has M", "Reference Dataset", "Force Closure"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "Generate" "input file" "output dataset" "Shape Type" "Has Attributes" "Has Z"

"Has M" "Reference Dataset" "Force Closure"

.NET using

ETGWOutX.dll

Generate(input file, output dataset, Shape Type, Has Attributes, Has Z,Has M, Reference

Dataset,Force Closure)

ArcPy arcpy.Generate(input file, output dataset, "Shape Type" , "Has Attributes", "Has Z", "Has M",

"Reference Dataset",Force Closure)

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space, you need to double quote
it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Ungenerate

Running programmatically

Exports a feature class to ArcInfo generate format text file. The user can specify optionally to export the attributes. In this case
the format of the result text file will be in an extended version of ArcInfo generate forma - described below

Inputs:

A feature layer

Point, PointZ, PointM

Polyline, PolylineZ, PolylineM

Polygon, PolygonZ, PolygonM

Outputs:

New text file

Notes:

If the "Export attributes" option is selected the output text file might not be readable from the ArcInfo Generate

command

If the "Export bounding rectEnvelope Onlys only" is selected (available for Polyline and Polygon layers), the resulting

text file will contain the coordinates of the extents for each shape.

File formats:

The shapes that have Z or M values will have an additional coordinate

Shape

Type
Standard Format Example Extended Format Example

Point

PointZ

PointM

id,x,y

id,x,y

id,x,y

END

1,34.5,-14.3

2,12.8,-19.6

3,13.4,-25.6

END

ID,X,Y,FIELD,FIELD

id,x,y,value,value

id,x,y,value,value

id,x,y,value,value

END

ID,X,Y,Town,Population

1,34.5,-14.3,London,44

2,12.8,-19.6,Paris,34

3,13.4,-25.6,Madrid,56

END

Polyline

PolylineZ

PolylineM

id

x,y

x,y

END

id

x,y

x,y

x,y

END

END

1

34.5,-14.3

12.8,-19.6

END

2

13.4,-25.6

16.4,-27.6

13.8,-22.1

END

END

ID,FIELD,FIELD

id,value,value

x,y

x,y

END

id,value,value

x,y

x,y

x,y

END

END

ID,Street,Streettype

1,Church,Street

34.5,-14.3

12.8,-19.6

END

2,Second,Avenue

13.4,-25.6

16.4,-27.6

13.8,-22.1

END

END

Polygon

PolygonZ

PolygonM

id,xLabel,yLabel

x,y

x,y

x,y

END

id

x,y

x,y

x,y

END

END

1, 12.5,-18,6

34.5,-14.3

12.8,-19.6

12.43,-19.88

END

2,14.3,24.5

13.4,-25.6

16.4,-27.6

13.8,-22.1

END

END

ID,FIELD,FIELD

id,value,value

x,y

x,y

x,y

END

id,value,value

x,y

x,y

x,y

END

END

ID,X,Y, Dam,Volume

1,12.5,-18,6,Vaal,5346

34.5,-14.3

12.8,-19.6

12.43,-19.88

END

2,14.3,24.5,Gariep,6578

13.4,-25.6

16.4,-27.6

13.8,-22.1

END

END

Box id,xmin,ymin,xmax,ymax

id,xmin,ymin,xmax,ymax

id,xmin,ymin,xmax,ymax

END

1,34.5,-14.3,34.8,-14.1

2,12.8,-19.6,12.9,-19.2

3,13.4,-25.6,13.6,-25.4

END

ID,XMIN,YMIN,XMAX,YMAX,FIELD

id,xmin,ymin,xmax,ymax,value

id,xmin,ymin,xmax,ymax,value

id,xmin,ymin,xmax,ymax,value

END

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function Name Ungenerate

<input dataset> A String representing the input layer. Must be of Polygon type.

<output file> A String - the full name of the output text file.

<Delimiter< A String indicating the delimiter to be used. Valid values: "Comma", "Tab", "Space"

{Delimiter Field} A String representing the name of a field in the in the attribute table of the input dataset. The field has

the values for the distance between the grid points.

{Export

Attributes}

A Boolean indicating whether the attributes to be exported to the text file

{Envelope Only} A Boolean indicating whether the envelope of the geometry to be exported instead of the entire

geometry.

{Precision} A Integer representing the number of digits after the decimal point to be used for storing coordinates.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program Files\ETSpatial Techniques\ETGeo
Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "Ungenerate", "input dataset", "output file", "Delimiter", "Export

Attributes", "Envelope Only", "Precision"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "Ungenerate" "input dataset" "output file" "Delimiter" "Export Attributes"

"Envelope Only" "Precision"

.NET using

ETGWOutX.dll

Ungenerate(input dataset, output file, Delimiter, Export Attributes, Envelope Only, "Precision")

ArcPy arcpy.Ungenerate(input dataset, output file , "Delimiter", "Export Attributes", "Envelope Only",

"Precision")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space, you need to double quote
it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Import from MapInfo

Running programmatically

Converts MapInfo native (TAB) or interchange (MIF) file to shapefile or File GDB layer/s.

Inputs

A TAB or MIF file.

Outputs

A shapefile/s or File GDB layer/s. One MapInfo file might contain different type geometries.

If this is the case a multiple layers will be produced - one for each geometry type. The

names of the output layers will be:

Point - OtputNamePnt

Plyline - OtputNamePl

Polygon - OtputNamePg

Notes

A MIF refers to a set of two MapInfo interchange files with extensions .MID and .MIF.

A TAB refers to a set of MapInfo binary files (usually with extensions .TAB, .DAT, .MAP, .ID,

.IND)

There might be some problems with the spatial reference of the converted layers.

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function ImportFromMapInfo

Name

<Input

MapInfo>

A String - the full name of the TAB or MIF file to be converted.

<output

dataset>

A String - the full name of the output layer.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "ImportFromMapInfo", "Input MapInfo", "output

dataset"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "ImportFromMapInfo" "Input MapInfo" "output dataset"

.NET using

ETGWOutX.dll

ImportFromMapInfo(Input MapInfo, output dataset)

ArcPy arcpy.ImportFromMapInfo(Input MapInfo, output dataset)

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Import DXF

Running programmatically

Converts an AutoDesk interchange DXF file to shapefile or File GDB layer/s.

Inputs

A DXF file.

Outputs

A shapefile/s or File GDB layer/s. One DXF file might contain different type geometries. If

this is the case a multiple layers will be produced - one for each geometry type. The names

of the output layers will be:

Point - OtputNamePnt

Plyline - OtputNamePl

Polygon - OtputNamePg

Notes

The resulting layer/s will not associated spatial reference.

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

ImportFromDXF

<Input DXF> A String - the full name of the DXF file to be converted.

<output

dataset>

A String - the full name of the output layer.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "ImportFromDXF", "Input DXF", "output

dataset"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "ImportFromDXF" "Input DXF" "output dataset"

.NET using

ETGWOutX.dll

ImportFromDXF(Input DXF, output dataset)

ArcPy arcpy.ImportFromDXF(Input DXF, output dataset)

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Import from GeoJSON

Running programmatically

Converts spatial data encoded in GeoJSON format plain text files (.JSON or .GEOJSON file
extensions) to shapefile or File GDB layer/s.

Inputs

A JSON or GEOJSON file.

The geometry type (Point, Polyline, Polygon or All) to be imported.

Outputs

A shapefile/s or File GDB layer/s. One GeoJSON file might contain different type

geometries. The user can specify which geometry type (or All) to be extracted. If the type

specified is "All" and the GeoJSON file contains multiple geometry types, then multiple

layers will be produced - one for each geometry type present in the input. The names of the

output layers will be:

Point - OtputNamePnt

Plyline - OtputNamePl

Polygon - OtputNamePg

Notes:

The output will preserve the spatial reference of the input GeoJSON file.

If the input file does not have spatial reference defined, then

If the extents of the input data are between -180 and 180, a geographic coordinate

system (WGS 84) will be set for spatial reference of the output layer/s.

If the extents of the input data are out of the -180 and 180 range and Unknown

spatial reference will be set for the output layer/s.

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

ImportGeoJson

<Input

GeoJSON>

A String - the full name of the .json or .geojson file to be converted.

<output

dataset>

A String - the full name of the output layer.

<Option> A String - the convertion option. Valid values.

"Point"

"Polygon"

"Polyline"

"All"

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program

Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "ImportGeoJson", "Input GeoJSON", "output

dataset", "Option"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "ImportGeoJson" "Input GeoJSON" "output dataset"

"Option"

.NET using ImportGeoJson(Input GeoJSON, output dataset, Option)

ETGWOutX.dll

ArcPy arcpy.ImportGeoJson(Input GeoJSON, output dataset, Option)

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Export To GeoJson

Running programmatically

Converts a feature layer to a text file encoded in GeoJSON format (.JSON or .GEOJSON file
extensions).

Inputs

A feature layer (Point, Polyline or Polygon).

Outputs

New text file encoded in GeoJSON format (.JSON or .GEOJSON file extensions).

Notes:

The input will be projected (if needed) and a geographic coordinate system (WGS 84) will

be set for spatial reference of the GeoJSON dataset.

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

ExportToGeoJson

<input

dataset>

A String representing the input layer. Must be of Polygon type.

<output

GeoJSON>

A String - the full name of the output .json or .geojson file

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program

Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "ExportToGeoJson", "input dataset", "output

GeoJSON"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "ExportToGeoJson" "input dataset" "output GeoJSON"

.NET using

ETGWOutX.dll

ExportToGeoJson(input dataset, output GeoJSON)

ArcPy arcpy.ExportToGeoJson(input dataset, output GeoJSON)

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Import from Open Street Map

Running programmatically

Converts spatial data encoded in Open Street Map - .osm (XML based) and .pbf (optimized binary)
formats to shapefile or File GDB layer/s.

Inputs

A .OSM or .PBF file.

The geometry type (Point, Polyline, Polygon or All) to be imported.

Outputs

A shapefile/s or File GDB layer/s. One Open Street Map file might contain different type

geometries. The user can specify which geometry type (or All) to be extracted. If the type

specified is "All" and the Open Street Map file contains multiple geometry types, then

multiple layers will be produced - one for each geometry type present in the input. The

names of the output layers will be:

Point - OtputNamePnt

Plyline - OtputNamePl

Polygon - OtputNamePg

Notes:

In some specific cases the processing of large XML based (.osm) files might fail. If you can

obtain the data in an optimized binary (.pbf) file it is much better to use this format.

The output will preserve the spatial reference of the input Open Street Map file.

If the input file does not have spatial reference defined, then

If the extents of the input data are between -180 and 180, a geographic coordinate

system (WGS 84) will be set for spatial reference of the output layer/s.

If the extents of the input data are out of the -180 and 180 range and Unknown

spatial reference will be set for the output layer/s.

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

ImportFromOSM

<Input OSM> A String - the full name of the .osm or .pbf file to be converted.

<output

dataset>

A String - the full name of the output layer.

<Option> A String - the convertion option. Valid values.

"Point"

"Polygon"

"Polyline"

"All"

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program

Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "ImportFromOSM", "Input OSM", "output

dataset", "Option"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "ImportFromOSM" "Input OSM" "output dataset"

"Option"

.NET using

ETGWOutX.dll

ImportFromOSM(Input OSM, output dataset, Option)

ArcPy arcpy.ImportFromOSM(Input OSM, output dataset, Option)

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Import a feature layer from ArcGIS REST service

Running programmatically

Converts a single layer from an ArcGIS REST server to shapefile or File GDB layer. An attribute query or spatial

extent can be used to convert only part of the published layer.

Inputs

An ArcGIS Server end point - URL to a specific published Feature Service. The End Point should contain

the full path to the feature service that you want to access

(http://host/instances/services/folder/subfolder/service). For example:

"http://sampleserver3.arcgisonline.com/ArcGIS/rest/services/Hydrography/Watershed173811/FeatureServer".

User name and Password if required.

The name of the layer to be imported.

Where clause if you want to filter to be imported by attributes (for example: Country = 'USA' AND

Population > 50000).

Extraction Extent if you want to import only the features in a specific geographic extent (rectangle).

Outputs

A shapefile or File GDB layer.

Notes:

The interface of ET GeoWizards allows to create a list of frequently used services and manage them.

The output will preserve the spatial reference of the input layer.

The function is not available in the Toolboxes for ArcGIS Desktop and ArcGIS Pro.

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function Name ImportRESTLayer

<Input

EndPoint>

A String - see above.

<Input Layer

Name>

A String - the name of the layer to be converted.

<output

dataset>

A String - the full name of the output layer.

{Where

Clause}

A String representing the Where Clause to be used as filter.

{Extraction

Envelope}

A String representing the envelope to be used as spatial filter. The format of the string is

"XMin;YMin;XMax;YMax"

{User Name} A String representing the User Name.

{Pasword} A String representing the Password.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program Files\ETSpatial
Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "ImportRESTLayer", "Input EndPoint", "Input Layer Name",

"output dataset", "Where Clause", "Extraction Envelope","User Name","Pasword"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "ImportRESTLayer" "Input EndPoint" "Input Layer Name" "output

dataset" "Where Clause" "Extraction Envelope" "User Name" "Pasword"

.NET using

ETGWOutX.dll

ImportRESTLayer(Input EndPoint,Input Layer Name, output dataset, Where Clause,

Extraction Envelope, User Name, Pasword)

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space, you need to

double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Import multiple layers from ArcGIS REST service

Running programmatically

Converts multiple layers from an ArcGIS REST server to shapefiles or File GDB layers. An user defined spatial

extent can be used to convert only parts of the published layers.

Inputs

An ArcGIS Server end point - URL to a specific published Feature Service. The End Point should contain

the full path to the feature service that you want to access

(http://host/instances/services/folder/subfolder/service). For example:

"http://sampleserver3.arcgisonline.com/ArcGIS/rest/services/Hydrography/Watershed173811/FeatureServer".

User name and Password if required.

The names of the layers to be converted.

Extraction Extent if you want to import only the features in a specific geographic extent (rectangle).

Outputs

Shapefile/s or File GDB layer/s.

Notes:

The interface of ET GeoWizards allows to create a list of frequently used services and manage them.

The outputs will preserve the spatial reference of the input layers.

The function is not available in the Toolboxes for ArcGIS Desktop and ArcGIS Pro.

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function Name ImportMultipleRESTLayers

<Input

EndPoint>

A String - see above.

<Input Layers

Names>

A String representing a list of the names of the layers to be converted. The format of the list

is "LayerName1;LayerName2;LayerName3". Note that is an empty string is passed, all

layers available will be imported.

<output

workspace>

A String - the full name to the folder or FileGDB where the outputs will be stored.

{Extraction

Envelope}

A String representing the envelope to be used as spatial filter. The format of the string is

"XMin;YMin;XMax;YMax"

{User Name} A String representing the User Name.

{Pasword} A String representing the Password.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program Files\ETSpatial

Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "ImportMultipleRESTLayers", "Input EndPoint", "Input Layers

Names", "output workspace", "Extraction Envelope","User Name","Pasword"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "ImportMultipleRESTLayers" "Input EndPoint" "Input Layers Names"

"output workspace" "Extraction Envelope" "User Name" "Pasword"

.NET using

ETGWOutX.dll

ImportMultipleRESTLayers(Input EndPoint,Input Layers Names, output workspace,

Extraction Envelope, User Name, Pasword)

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space, you need to

double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Import multiple layers from ArcGIS REST service

Running programmatically

Converts multiple layers from an Open Geospatial Consortium (OGS) Web Feature Service (WFS) to
shapefiles or File GDB layers.

Inputs

An WFS end point - URL to a specific published Feature Service. The End Point should

contain the full path to the feature service that you want to access

(http://PathTo/WebFeatureService/service). For example:

"http://nsidc.org/cgi-bin/atlas_south".

User name and Password if required.

The names of the layers to be converted.

Outputs

Shapefile/s or File GDB layer/s.

Notes:

The interface of ET GeoWizards allows to create a list of frequently used services and

manage them.

The outputs will preserve the spatial reference of the input layers.

The function is not available in the Toolboxes for ArcGIS Desktop and ArcGIS Pro.

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

ImportWFSLayers

<Input

EndPoint>

A String - see above.

<Input Layer

Names>

A String representing a list of the names of the layers to be converted. The

format of the list is "LayerName1;LayerName2;LayerName3". Note that is an

empty string is passed, all layers available will be imported.

<output

workspace>

A String - the full name to the folder or FileGDB where the outputs will be

stored.

{User Name} A String representing the User Name.

{Pasword} A String representing the Password.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "ImportWFSLayers", "Input EndPoint", "Input

Layers Names", "output workspace", "User Name","Pasword"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "ImportWFSLayers" "Input EndPoint" "Input Layers

Names" "output workspace" "User Name" "Pasword"

.NET using

ETGWOutX.dll

ImportWFSLayers(Input EndPoint,Input Layers Names, output workspace,

User Name, Pasword)

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Vector Grid

Running programmatically

Creates a polyline or polygon vector grid using:

User defined extents and cell size

User defined origin, cell size, number rows and columns.

Inputs:

Grid creation options:

Initial extent of the grid and cell size

Origin point of the grid, cell size, number of rows and columns.

Output spatial reference - can be assigned based on a reference layer used.

Grid type

Polyline

Polygon

Outputs:

New Polyline or Polygon feature class

Notes:

The initial extent of the grid is defined by the extents of the selected reference layer or

manually

The cell size will be in the units of the reference layer or "Unknown" if no reference layer is

used.

In order to avoid incorrect inputs, the size of the grid is limited to 8,000,000 cells

A ET_Index field will be added to the attribute table. The values will indicate:

Polygon grid - the index of each Grid cell. The cell in the bottom left corner of the

Grid will have an index of "0-0"

Polyline grid - the X (Y) for each polyline in the input units.

Running Programmatically

(Go to TOP)

Two different functions are available for the Vector Grid creation

Vector Grid Extent

Parameters

Expression Explanation

Function

Name

VectorGridExtent

<output

dataset>

A String - the full name of the output layer.

<Grid Type> Required. A String indicating the type of the grid to be created. Valid values:

"Polygon"

"Polyline"

<Cell SizeX> A Double - the cell size in X direction.

<Cell SizeY> A Double - the cell size in Y direction.

<Extents

From

Reference>

A Boolean indicating whether the extents of the grid will be taken from a

reference dataset.

{Reference

Dataset}

A String - the full name of the reference dataset.

{MinX} A Double - minimum X of the extent.

{MinY} A Double - minimum Y of the extent.

{MaxX} A Double - maximum X of the extent.

{MinX} A Double - maximum Y of the extent.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "VectorGridExtent", "output dataset", "Grid

Type", "Cell SizeX", "Cell SizeY", "Extents From Reference", "Reference

Dataset"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "VectorGridExtent" "output dataset" "Grid Type" "Cell

SizeX" "Cell SizeY" "Extents From Reference" "Reference Dataset"

.NET using

ETGWOutX.dll

VectorGridExtent(output dataset, Grid Type, Cell SizeX, Cell SizeY,Extents

From Reference, Reference Dataset)

ArcPy arcpy.VectorGridExtent(output dataset, "Grid Type" , "Cell SizeX", "Cell

SizeY", "Extents From Reference", "Reference Dataset")

(Go to TOP)

Vector Grid Origin

Parameters

Expression Explanation

Function

Name

VectorGridOrigin

<output

dataset>

A String - the full name of the output layer.

<Grid Type> Required. A String indicating the type of the grid to be created. Valid values:

"Polygon"

"Polyline"

<Cell SizeX> A Double - the cell size in X direction.

<Cell SizeY> A Double - the cell size in Y direction.

<Number

Columns>

An Integer - the number of columns to be created.

<Number

Rows>

An Integer - the number of rows to be created.

<Origin From

Reference>

A Boolean indicating whether the origin point of the grid will be taken from a

reference dataset.

{Reference

Dataset}

A String - the full name of the reference dataset.

{Lower LeftX} A Double - X of the lower left corner of the extent.

{Lower LeftY} A Double - Y of the lower left corner of the extent.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "VectorGridOrigin", "output dataset", "Grid

Type", "Cell SizeX", "Cell SizeY","Number Columns","Number Rows", "Origin

From Reference", "Reference Dataset"])

.NET using StartInfo.FileName = ETGWPath

ETGWRun.exe StartInfo.Arguments = "VectorGridOrigin" "output dataset" "Grid Type" "Cell

SizeX" "Cell SizeY" "Number Columns" "Number Rows" "Origin From

Reference" "Reference Dataset"

.NET using

ETGWOutX.dll

VectorGridOrigin(output dataset, Grid Type, Cell SizeX, Cell SizeY,Number

Columns, Number Rows, Origin From Reference, Reference Dataset)

ArcPy arcpy.VectorGridOrigin(output dataset, "Grid Type" , "Cell SizeX", "Cell

SizeY", "Number Columns", "Number Rows", "Origin From Reference",

"Reference Dataset")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Point Grid

Running programmatically

Creates a grid of points using user defined grid type and distance between the points.

User defined extents and cell size

User defined origin, cell size, number rows and columns.

Inputs:

Grid creation options:

Initial extent of the grid and cell size

Origin point of the grid, cell size, number of rows and columns.

Output spatial reference - can be assigned based on a reference layer used.

Grid type

Square

Rectangle

Triangle - equilateral

Distance between the points - in the case of rectangle X and Y spacing are required

Outputs:

New Point dataset

Notes:

The initial extent of the grid is defined by the extents of the selected reference layer or

manually

The cell size will be in the units of the reference layer or "Unknown" if no reference layer is

used.

In order to avoid incorrect inputs, the size of the grid is limited to 8,000,000 cells

A ET_Index field will be added to the point attribute table to indicate the index of each point

in the Grid. The point in the bottom left corner of the Grid will have an index of "0-0"

Running Programmatically

(Go to TOP)

Two different functions are available for the Vector Grid creation

Vector Grid Extent

Parameters

Expression Explanation

Function

Name

PointGridExtent

<output

dataset>

A String - the full name of the output layer.

<Grid Type> Required. A String indicating the type of the grid to be created. Valid values:

"Triangle"

"Square"

"Rectangle"

<Cell SizeX> A Double - the cell size in X direction.

<Cell SizeY> A Double - the cell size in Y direction.

<Extents

From

Reference>

A Boolean indicating whether the extents of the grid will be taken from a

reference dataset.

{Reference

Dataset}

A String - the full name of the reference dataset.

{MinX} A Double - minimum X of the extent.

{MinY} A Double - minimum Y of the extent.

{MaxX} A Double - maximum X of the extent.

{MinX} A Double - maximum Y of the extent.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "PointGridExtent", "output dataset", "Grid Type",

"Cell SizeX", "Cell SizeY", "Extents From Reference", "Reference Dataset"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "PointGridExtent" "output dataset" "Grid Type" "Cell

SizeX" "Cell SizeY" "Extents From Reference" "Reference Dataset"

.NET using

ETGWOutX.dll

PointGridExtent(output dataset, Grid Type, Cell SizeX, Cell SizeY,Extents

From Reference, Reference Dataset)

ArcPy arcpy.PointGridExtent(output dataset, "Grid Type" , "Cell SizeX", "Cell SizeY",

"Extents From Reference", "Reference Dataset")

(Go to TOP)

Vector Grid Origin

Parameters

Expression Explanation

Function

Name

PointGridOrigin

<output A String - the full name of the output layer.

dataset>

<Grid Type> Required. A String indicating the type of the grid to be created. Valid values:

"Triangle"

"Square"

"Rectangle"

<Cell SizeX> A Double - the cell size in X direction.

<Cell SizeY> A Double - the cell size in Y direction.

<Number

Columns>

An Integer - the number of columns to be created.

<Number

Rows>

An Integer - the number of rows to be created.

<Origin From

Reference>

A Boolean indicating whether the origin point of the grid will be taken from a

reference dataset.

{Reference

Dataset}

A String - the full name of the reference dataset.

{Lower LeftX} A Double - X of the lower left corner of the extent.

{Lower LeftY} A Double - Y of the lower left corner of the extent.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "PointGridOrigin", "output dataset", "Grid Type",

"Cell SizeX", "Cell SizeY","Number Columns","Number Rows", "Origin From

Reference", "Reference Dataset"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "PointGridOrigin" "output dataset" "Grid Type" "Cell

SizeX" "Cell SizeY" "Number Columns" "Number Rows" "Origin From

Reference" "Reference Dataset"

.NET using

ETGWOutX.dll

PointGridOrigin(output dataset, Grid Type, Cell SizeX, Cell SizeY,Number

Columns, Number Rows, Origin From Reference, Reference Dataset)

ArcPy arcpy.PointGridOrigin(output dataset, "Grid Type" , "Cell SizeX", "Cell SizeY",

"Number Columns", "Number Rows", "Origin From Reference", "Reference

Dataset")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Random Points On Polylines

Running programmatically

Generates random points located on the polylines of the input polyline dataset. The number of points
per polyline can be constant or different for each polyline - based on the values in a numeric field of

the input polyline feature class."

Inputs:

A polyline feature class

The number of points per polyline can be input in one of the following ways

A numeric field which values will be used to get the number of points to be generated

per polyline.

A constant number

Optional: Minimum Distance from boundary - no point will be generated that is closer than this

tolerance to the ends of the polyline.

Outputs:

New Point feature class.

The following fields are added to the attribute table of the resulting feature class.

[ET_ID] - the ID of the original polyline

[ET_X] - the X coordinate of the point

[ET_Y] - the Y coordinate of the point

[ET_Station] - the absolute position of the point along the polyline (in the units of the

spatial reference of the input point feature class)

Note: Be careful with assigning the number of points per polyline. The function will try to create N
unique points on the polyline and if the number of points allocated is too large, might be very slow or

even fall into an indefinite loop.

Illustration:

Original polylines labeled with the values in field to be used as a source for getting the number of
points to be generated

The resulting point dataset

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

RandomPointsOnPolylines

<input

dataset>

A String representing the input layer. Must be of Polyline type.

<output

dataset>

A String - the full name of the output layer.

{Number

Points}

An Integer representing the number of points per polygon to be created.

{Number A String representing the name of a field in the in the attribute table of the input

Points Field} dataset. The field has the values for the number points per polygon to be

created.

{Distance to

Ends}

A Double representing the minimum distance to the ends of the polyline

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "RandomPointsOnPolylines", "input dataset",

"output dataset", "Number Points", "Number Points Field", "Distance to

Ends"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "RandomPointsOnPolylines" "input dataset" "output

dataset" "Number Points" "Number Points Field" "Distance to Ends"

.NET using

ETGWOutX.dll

RandomPointsOnPolylines(input dataset, output dataset, Number Points,

Number Points Field, Distance to Ends)

ArcPy arcpy.RandomPointsOnPolylines(input dataset, output dataset, "Number

Points", "Number Points Field", "Distance to Ends")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Random Points In Polygons

Running programmatically

Generates random points located in the polygons of the input polygon dataset. The number of points
per polygon can be constant or different for each polygon - based on the values in a numeric field of

the input polygon feature class.

Inputs:

A polygon feature class

The number of points per polygon can be input in one of the following ways

A numeric field which values will be used to get the number of points to be

generated per polygon.

A constant number

Optional: Minimum Distance from boundary - no point will be generated that is closer than this

tolerance to the boundary of the polygon.

Optional: Minimum distance between the points

Outputs:

New Point feature class.

The following fields are added to the attribute table of the resulting feature class.

[ET_ID] - the ID of the original polygon

[ET_X] - the X coordinate of the point

[ET_Y] - the Y coordinate of the point

Notes:

If the number of points specified cannot be placed in specific polygon, a message will be

stored in the log file.

The larger minimum distance between the points specified, the more uniform the points

created will be.

Illustration:

Original polygons labeled with the values in field to be used as a source for getting the number of
points to be generated and the resulting points. Distance between points = 0, Minimum distance to
boundary = 0

30 points per polygon.

Distance between points = 0, Minimum distance to boundary = 0

Distance between points = 0, Minimum distance to boundary = 5

30 points per polygon. Distance between points = 5, Minimum distance to boundary = 0

30 points per polygon. Distance between points = 5, Minimum distance to boundary = 5

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

RandomPointsInPolygons

<input

dataset>

A String representing the input layer. Must be of Polygon type.

<output

dataset>

A String - the full name of the output layer.

{Number

Points}

An Integer representing the number of points per polygon to be created.

{Number

Points Field}

A String representing the name of a field in the in the attribute table of the input

dataset. The field has the values for the number points per polygon to be

created.

{Distance

Between}

A Double representing the minimum distance between the points to be

generated.

{Distance to

Boundary}

A Double representing the minimum distance to the polygon boundary

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "RandomPointsInPolygons", "input dataset",

"output dataset", "Number Points", "Number Points Field", "Distance

Between","Distance to Boundary"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "RandomPointsInPolygons" "input dataset" "output

dataset" "Number Points" "Number Points Field" "Distance Between"

"Distance to Boundary"

.NET using

ETGWOutX.dll

RandomPointsInPolygons(input dataset, output dataset, Number Points,

Number Points Field, Distance Between, Distance to Boundary)

ArcPy arcpy.RandomPointsInPolygons(input dataset, output dataset, "Number

Points", "Number Points Field", "Distance Between", "Distance to Boundary")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Point Grids In Polygons

Running programmatically

Generates uniform (regularly spaced) points located in the polygons of the input polygon dataset. The
distance between the points for each polygon can be the same or different - based on the values in a

numeric field of the input polygon feature class. The user can specify the rotation angle for the
resulting point grid.

Inputs:

A polygon feature class

The distance between the points for each polygon can be input in one of the following ways

A numeric field which values will be used to get the distance between points for

each polygon.

A constant number defining the distance between points for all polygons.

Rotation angle

Constant for all polygons - (in degrees starting from North clockwise)

From field - different rotation angle for each field (in degrees starting from North clockwise)

Along the longest axis of each polygon

Along the longest side of each polygon

Outputs:

New Point feature class.

The following fields are added to the attribute table of the resulting feature class.

[ET_ID] - the ID of the original polygon

Illustration:

Distance between points = 10, Rotational angle = 0

Original polygons labeled with the values in field to be used as a source for getting the distance

between the points. Rotational angle = "Along the longest Side"

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

PointGridsInPolygons

<input

dataset>

A String representing the input layer. Must be of Polygon type.

<output

dataset>

A String - the full name of the output layer.

{Size} A Double representing distance between the grid points.

{Size Field} A String representing the name of a field in the in the attribute table of the input

dataset. The field has the values for the distance between the grid points.

<Angle

From>

Required. A String -This parameter defines what will be the source rotation of

the grids:

"Constant" - user defined value for all grids.

"FromField" - different for each grid based on a value in the attribute

table.

"LongestAxis" - the grids will be oriented along the longest axis of

each polygon.

"LongestSide" - the grids will be oriented along the longest side of

each polygon.

{Angle} A Double representing the rotation angle of the grids

{Angle Field} A String representing the name of a field in the in the attribute table of the input

dataset field name. The field has the values for the angle of the grids to be

created.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "PointGridsInPolygons", "input dataset", "output

dataset", "Size", "", "Angle From", "Angle", ""])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "PointGridsInPolygons" "input dataset" "output dataset"

"Size" "" "Angle From" "Angle" ""

.NET using

ETGWOutX.dll

PointGridsInPolygons(input dataset, output dataset, Size, "", Angle From,

Angle, "")

ArcPy arcpy.PointGridsInPolygons(input dataset, output dataset , "Size", "", "Angle

From", "Angle", """)

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Square Grids In Polygons

Running programmatically

Generates square grids located in the polygons of the input polygon dataset. The cell size for each
polygon can be the same or different - based on the values in a numeric field of the input polygon

feature class. The user can specify the rotation angle for the resulting square grids.

Inputs:

A polygon feature class

The cell size of the grid for each polygon can be input in one of the following ways

A numeric field which values will define the cell size for the grid for each polygon.

A constant number that defines the cell size (the same for all polygons)

Rotation angle

Constant for all polygons - (in degrees starting from North clockwise)

From field - different rotation angle for each field (in degrees starting from North clockwise)

Along the longest axis of each polygon

Along the longest side of each polygon

Squares completely inside the polygons

if TRUE - no square will intersect the polygon boundary.

If FALSE - the centers of the squares will be inside the polygons, but the squares might

intersect the polygon boundary

Outputs:

New Polygon feature class.

The following fields are added to the attribute table of the resulting feature class.

[ET_ID] - the ID of the original polygon

Illustration:

Cell size = 10, Rotational angle = "Along the longest side", Completely inside = TRUE

Original polygons labeled with the values in field to be used as a source for the Cell Size. Rotational

angle = "Along the longest Axis", Completely inside = FALSE

Original polygons labeled with the values in field to be used as a source for the Cell Size. Rotational
angle = 0, Completely inside = TRUE

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

SquareGridsInPolygons

<input

dataset>

A String representing the input layer. Must be of Polygon type.

<output

dataset>

A String - the full name of the output layer.

{Size} A Double representing grid cell size

{Size Field} A String representing the name of a field in the in the attribute table of the input

dataset. The field has the values for the cell size of the grid polygons to be

created.

<Angle

From>

Required. A String -This parameter defines what will be the source rotation of

the grids:

"Constant" - user defined value for all grids.

"FromField" - different for each grid based on a value in the attribute

table.

"LongestAxis" - the grids will be oriented along the longest axis of

each polygon.

"LongestSide" - the grids will be oriented along the longest side of

each polygon.

{Angle} A Double representing the rotation angle of the grids

{Angle Field} A String representing the name of a field in the in the attribute table of the input

dataset field name. The field has the values for the angle of the grids to be

created.

{Inside Only} A Boolean indicating whether all cells to be only inside the polygons.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "SquareGridsInPolygons", "input dataset",

"output dataset", "Size", "", "Angle From", "Angle", "", "Inside Only"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "SquareGridsInPolygons" "input dataset" "output

dataset" "Size" "" "Angle From" "Angle" "" "Inside Only"

.NET using

ETGWOutX.dll

SquareGridsInPolygons(input dataset, output dataset, Size, "", Angle From,

Angle, "", Inside Only)

ArcPy arcpy.SquareGridsInPolygons(input dataset, output dataset , "Size", "", "Angle

From", "Angle", "", "Inside Only")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,

you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Uniform Points In Polygons

Running programmatically

Generates uniform (regularly spaced) points located in the polygons of the input polygon dataset. The
number of points per polygon can be constant or different for each polygon - based on the values in a

numeric field of the input polygon feature class. The distance between the points is interpolated for
each polygon. The user can specify the rotation angle for the resulting point grid.

Inputs:

A polygon feature class

The number of points per polygon can be input in one of the following ways

A numeric field which values will be used to get the number of points to be

generated per polygon.

A constant number

Optional: Minimum Distance from boundary - no point will be generated that is closer than this

tolerance to the boundary of the polygon.

Rotation angle

Constant for all polygons - (in degrees starting from East anti-clockwise)

From field - different rotation angle for each field (in degrees starting from East anti-clockwise)

Along the longest axis of each polygon

Along the longest side of each polygon

Outputs:

New Point feature class.

The following fields are added to the attribute table of the resulting feature class.

[ET_ID] - the ID of the original polygon

[ET_X] - the X coordinate of the point

[ET_Y] - the Y coordinate of the point

[ET_Dist] - the distance between the generated points (constant for the points in

each polygon)

Illustration:

Original polygons labeled with the values in field to be used as a source for getting the number of
points to be generated and the resulting points.Rotational angle = 0, Minimum distance to boundary =
5

Original polygons labeled with the values in field to be used as a source for getting the number of

points to be generated and the resulting points.
Rotational angle = "Along the longest Axis", Minimum distance to boundary = 5

Original polygons labeled with the values in field to be used as a source for getting the number of
points to be generated and the resulting points. Rotational angle = "Along the longest side", Minimum
distance to boundary = 5

50 points per polygon. Rotational angle = "Along the longest side", Minimum distance to boundary = 0

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

UniformPointsInPolygons

<input

dataset>

A String representing the input layer. Must be of Polygon type.

<output

dataset>

A String - the full name of the output layer.

<Angle

From>

Required. A String -This parameter defines what will be the source rotation of

the grids:

"Constant" - user defined value for all grids.

"FromField" - different for each grid based on a value in the attribute

table.

"LongestAxis" - the grids will be oriented along the longest axis of

each polygon.

"LongestSide" - the grids will be oriented along the longest side of

each polygon.

{Number

Points}

An Integer representing the number of points per polygon to be created.

{Number

Points Field}

A String representing the name of a field in the in the attribute table of the input

dataset. The field has the values for the number points per polygon to be

created.

{Angle} A Double representing the rotation angle of the grids

{Angle Field} A String representing the name of a field in the in the attribute table of the input

dataset field name. The field has the values for the angle of the grids to be

created.

{Distance to

Boundary}

A Double representing the minimum distance to the polygon boundary

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program

Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "UniformPointsInPolygons", "input dataset",

"output dataset", "Angle From", "Number Points", "Number Points Field",

"Angle", "","Distance to Boundary"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "UniformPointsInPolygons" "input dataset" "output

dataset" "Angle From" "Number Points" "Number Points Field" "Angle" ""

"Distance to Boundary"

.NET using

ETGWOutX.dll

UniformPointsInPolygons(input dataset, output dataset, Angle From, Number

Points, Number Points Field, Angle, "", Distance to Boundary)

ArcPy arcpy.UniformPointsInPolygons(input dataset, output dataset , "Angle From",

"Number Points", "Number Points Field", "Angle", "", "Distance to Boundary")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,

you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Create Tiles

Running programmatically

Creates a regular polygons grid with user defined.

extents, tile shape and size

origin, number rows and columns, tile shape and size .

Inputs:

Tiles creation options:

Extents

Origin, number rows and columns.

Output spatial reference - can be assigned based on a reference layer used.

Tiles shape

Triangle

Square

Hexagon

Cell size.

Tile Type option - depending on the user input the size parameter can represent

The side of the polygon

The radius of the circle inscribed in the polygon

The radius of the circle circumscribed around the polygon.

Shape orientation (for square and hexagon tiles only) - see examples below

Flat

Pointy

Outputs:

New Polygon layer

Notes:

The initial extent of the tiles is defined by the extents of the selected reference layer or

manually

The cell size will be in the units of the reference layer or "Unknown" if no reference layer is

used.

In order to avoid incorrect inputs, the size of the grid is limited to 8,000,000 cells

A ET_Index field will be added to the attribute table. The values will indicatethe index of

each Grid cell. The tile in the bottom left corner will have an index of "0-0"

Examples:

Shape = Triangle

Shape = Square, Orientation = "Pointy"

Shape = Hexagon, Orientation = "Flat"

Shape = Hexagon, Orientation = "Pointy"

Running Programmatically

(Go to TOP)

Two different functions are available for the Vector Grid creation

Create Tiles Extent

Parameters

Expression Explanation

Function

Name

CreateTilesExtent

<output

dataset>

A String - the full name of the output layer.

<Tile Type> Required. A String indicating the type of the tiles to be created. Valid values:

"Triangle"

"Square"

"Hexagon"

<Size

Represents>

A String indicating the meaning of the SIZE parameter. Valid values:

"Side"

"RadiusIn"

"RadiusOut"

<Tile Size> A Double - the size of the tile.

<Orientation> A String indicating the orientation of the tiles (see examples above). Valid

values:

"Flat"

"Pointy"

<Extents

From

Reference>

A Boolean indicating whether the extents of the grid will be taken from a

reference dataset.

{Reference

Dataset}

A String - the full name of the reference dataset.

{MinX} A Double - minimum X of the extent.

{MinY} A Double - minimum Y of the extent.

{MaxX} A Double - maximum X of the extent.

{MinX} A Double - maximum Y of the extent.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "CreateTilesExtent", "output dataset", "Tile

Type", "Size Represents", "Tile Size", "Orientation", "Extents From

Reference", "Reference Dataset"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "CreateTilesExtent" "output dataset" "Tile Type" "Size

Represents" "Tile Size" "Orientation" "Extents From Reference" "Reference

Dataset"

.NET using

ETGWOutX.dll

CreateTilesExtent(output dataset, Tile Type, Size Represents, Tile Size,

Orientation, Extents From Reference, Reference Dataset)

ArcPy arcpy.CreateTilesExtent(output dataset, "Tile Type" , "Size Represents", "Tile

Size", "Orientation" "Extents From Reference", "Reference Dataset")

(Go to TOP)

Create Tiles Origin

Parameters

Expression Explanation

Function

Name

CreateTilesOrigin

<output

dataset>

A String - the full name of the output layer.

<Tile Type> Required. A String indicating the type of the tiles to be created. Valid values:

"Triangle"

"Square"

"Hexagon"

<Number

Columns>

An Integer - the number of columns to be created.

<Number

Rows>

An Integer - the number of rows to be created.

<Size

Represents>

A String indicating the meaning of the SIZE parameter. Valid values:

"Side"

"RadiusIn"

"RadiusOut"

<Tile Size> A Double - the size of the tile.

<Orientation> A String indicating the orientation of the tiles (see examples above). Valid

values:

"Flat"

"Pointy"

<Origin From

Reference>

A Boolean indicating whether the origin point of the grid will be taken from a

reference dataset.

{Reference

Dataset}

A String - the full name of the reference dataset.

{Lower LeftX} A Double - X of the lower left corner of the extent.

{Lower LeftY} A Double - Y of the lower left corner of the extent.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "CreateTilesOrigin", "output dataset", "Tile

Type", "Number Columns","Number Rows", "Size Represents", "Tile Size",

"Origin From Reference", "Reference Dataset"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "CreateTilesOrigin" "output dataset" "Tile Type"

"Number Columns" "Number Rows" "Size Represents" "Tile Size" "Origin

From Reference" "Reference Dataset"

.NET using

ETGWOutX.dll

CreateTilesOrigin(output dataset, Tile Type, Number Columns, Number

Rows, Size Represents, Tile Size, Origin From Reference, Reference

Dataset)

ArcPy arcpy.CreateTilesOrigin(output dataset, "Tile Type", "Number Columns",

"Number Rows", "Size Represents", "Tile Size", "Origin From Reference",

"Reference Dataset")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Clean Points

Running programmatically

Removes the duplicate points from a point feature data set.

Inputs:

A point feature layer

Outputs:

New Point dataset

Each set of duplicate points (that have exactly the same location) will be replaced

by a single point. This point will carry the attributes of one of the original points.

Optional Point dataset that identifies the duplicates in the input data set.

The attribute table of the duplicates feature class has all the fields from the input

data set.

The attributes of the points are these that have not been preserved in the clean

feature class. Example:. If two points with attributes "A" and "B" have exactly the

same location. The clean feature class will contain only one of them e.g. "A". The

duplicates feature class will contain the other one -"B"

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

CleanPoints

<input

dataset>

A String representing the input layer. Must be of Polygon type.

<output

dataset>

A String - the full name of the output layer.

{Duplicates

Dataset}

A String - the full name of the output dataset that identifies the points removed

as duplicates. (A dataset with the same full name should not exist) .

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "CleanPoints", "input dataset", "output dataset",

"Duplicates Dataset"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "CleanPoints" "input dataset" "output dataset"

"Duplicates Dataset"

.NET using

ETGWOutX.dll

CleanPoints(input dataset, output dataset, Duplicates Dataset)

ArcPy arcpy.CleanPoints(input dataset, "output dataset" , "Duplicates Dataset")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Connect Points

Running programmatically

Connects with lines each point from a point dataset to every other point from the same dataset that is
closer to the point than the user defined cut off distance.

Assigns the IDs of the From and To Points to each line.

Calculates the length and angle of the connector lines.

Inputs:

A Point layer

Cutoff distance - in the units of the spatial reference of the input dataset. Points that are

farther to each other than this tolerance will not be connected.

Max number of points to connect.

Add duplicate lines. If false only one line will be created between two points closer to each

other then the Cutoff distance.

Outputs:

New point layer. Fields:

[ET_From] - the ID of the start point of the line

[ET_To] - the ID of the end point of the line

[ET_Length] - the length of the line

[ET_Angle] - the angle of the line

Notes:

If no Cutoff distance tolerance is specified each point will be connected to all other points

Important: The number of connector lines created if no cutoff distance is used can be

calculated using the formulae N = n x (n-1)/2 (N - number of lines, n - number of input

points). For example 1,000 points will create 499,500 lines, 10,000 points will create

49,995,000 lines, which is not a dataset you want to handle.

Example:

Point 0 connects to Points 1, 2, 3, 4

Point 1 connects to Points 2, 3, 4 (it already has been connected to Point 0)

Point 2 connects to Points 3, 4 (it already has been connected to Points 0 and 1)

......

The angle is calculated in North Azimuth direction

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

ConnectPoints

<input

dataset>

A String representing the input layer. Must be of Point type.

<output

dataset>

A String - the full name of the output layer.

<Number

Neighbours>

An Integer representing the maximum number of points to connect to each

point.

{CutOff

Distance}

A Double representing the maximum distance to a neighbor to be connected.

The units of the tolerance are the units of spatial reference of the input dataset.

{Add

Duplicates}

A Boolean indicating whether duplicate lines will be added to the output.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "ConnectPoints", "input dataset", "output

dataset", "Number Neighbours", "CutOff Distance", "Add Duplicates"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "ConnectPoints" "input dataset" "output dataset"

"Number Neighbours" "CutOff Distance" "Add Duplicates"

.NET using

ETGWOutX.dll

ConnectPoints(input dataset, output dataset, Number Neighbours, CutOff

Distance, Add Duplicates)

ArcPy arcpy.ConnectPoints(input dataset, output dataset, Number Neighbours,

CutOff Distance,Add Duplicates)

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Disperse Points

Running programmatically

Disperses (separates) the coincident points. The first point in a location preserves its coordinates.
Every next point found in the same location is moved randomly within user defined maximum offset

distance from its original location.

Inputs:

A Point feature class

Maximum allowed offset - the duplicate points will move no further than this tolerance from

their original location.

Dispersion method:

Random - the points will be relocated randomly within the specified allowed

distance

Regular - the resulting points will be placed on a circle with radius the allowed

offset distance.

Outputs:

New point feature class. Fields:

The attributes of the original features will be preserved.

[ET_Status] field will be added. The values in this field will indicate whether the

resulting point is in its original position or has been relocated.

Examples:

Input Dataset

Dispersed Randomly

Dispersed Regularly

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

DispersePoints

<input

dataset>

A String representing the input layer. Must be of Polygon type.

<output

dataset>

A String - the full name of the output layer.

<Tolerance> A Double representing the Maximum allowed offset - the duplicate points will

move no further than this tolerance from their original location.

<Disperse

Mathod<

A string defining how the points will be dispersed. Valid values - "Random" or

"Regular".

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "DispersePoints", "input dataset", "output

dataset", "Tolerance", "Disperse Mathod"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "DispersePoints" "input dataset" "output dataset"

"Tolerance" "Disperse Mathod"

.NET using

ETGWOutX.dll

DispersePoints(input dataset, output dataset, Tolerance, Disperse Mathod)

ArcPy arcpy.DispersePoints(input dataset, output dataset, "Tolerance", "Disperse

Mathod")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Perpendiculars from Points to Polylines

Running programmatically

Draws a perpendicular polyline from each point to the closest polyline from the reference layer and
calculates several attributes for each perpendicular line.

Inputs:

A point layer

A reference polyline layer

Search tolerance.

Keep Input Spatial Reference - If selected the output will have the spatial reference of the

input dataset, else the spatial reference of the reference dataset will be used

Outputs:

New Polyline layer with lines from the source points and perpendicular to the closest

polyline from the reference layer.

The attributes of the original points are transferred to the resulting lines.

The following fields are added to the attribute table of the resulting layer.

[ET_Dist] - the distance from the original point to the closest polyline (the length of

the perpendicular line)

[ET_Pos] - the relative position of the original point along the closest polyline (in

percent)

[ET_Angle] - the angle (0 to 360) of the resulting perpendicular line in degrees

starting North clockwise

[ET_Station] - the absolute position of the original point along the closest polyline

(in the units of the spatial reference of the input point layer)

Notes:

The units of the Search Tolerance should be the units of spatial reference of the input

dataset if the user has selected the Keep Source Spatial Reference option. Otherwise - the

units of spatial reference of the reference dataset.

The Source and the Snap datasets can have different spatial references as long as they

have the same Geographic Coordinate systems.

Illustration:

(Go to TOP)

Parameters

Expression Explanation

Function Name PerpendicularsToPolylines

<input dataset> A String representing the input layer. Must be of Point type.

<reference

dataset>

A String representing the reference layer. Must be of Polyline type

<output dataset> A String - the full name of the output layer.

<search

tolerance>

A Double representing the Search tolerance to be used. The units of the

tolerance are the units of spatial reference of the input dataset if

KeepSourceSref = TRUE. Otherwise - the units of spatial reference of the

reference dataset.

{KeepSourceSref} A Boolean indicating whether the output to have the spatial reference of

the input layer. If False or 0, the spatial reference of the reference layer will

be used.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "PerpendicularsToPolylines", "input dataset",

"reference dataset", "output dataset", "search tolerance", "KeepSourceSref"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "PerpendicularsToPolylines" "input dataset"

"reference dataset" "output dataset" "search tolerance" "KeepSourceSref"

.NET using

ETGWOutX.dll

PerpendicularsToPolylines(input dataset,reference dataset, output dataset,

search tolerance, KeepSourceSref)

ArcPy arcpy.PerpendicularsToPolylines(input dataset, reference dataset, output

dataset, "search tolerance" , "KeepSourceSref")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Point Angle and Position

Running programmatically

Identifies the closest polyline from the reference layer to each point and calculates: the angle of the
closest polyline segment, the position & stationing of the point along the polyline and the distance to

the polyline

Inputs:

Point feature layer

Reference polyline layer

Search tolerance - the maximum distance to search for features in the distance layer

Keep Input Spatial Reference - If selected the output will have the spatial reference of the

input dataset, else the spatial reference of the reference dataset will be used

Outputs:

A new Point feature class. The attribute table of the resulting feature class will have three

new fields

[ET_Angle] - the angle of the closest segment of the closest to the point polyline.

The angle is in degrees 0.00 = North, clockwise.

[ET_Pos] - the distance from the start point of the closest polyline to the point

along the polyline as a percentage of the total length of the polyline.

[ET_Station] - the actual distance from the start point of the closest polyline to the

point along the polyline, measured in the map units

[ET_Dist] - the shortest distance from the point to the closest polyline measured in

the map units

[ET_Side] - indicates on which side of the polyline is the point (introduced in

version 10.2).

[ET_M]/[ET_Z] - the M(Z) value interpolated from the closest polyline (if the

reference dataset is of PolylineM(Z) type)

[ET_Closest] - the ID of the closest polyline from the reference dataset.

Notes:

If the distance from a point to the closest feature from the distance layer is larger than the

Search Tolerance then the [ET_Angle] will have a value of 0, [ET_Pos] and [ET_Station] will

have values of -1

The units of the Search Tolerance should be the units of spatial reference of the input

dataset if the user has selected the Keep Source Spatial Reference option. Otherwise - the

units of spatial reference of the reference dataset.

The distances are calculated in the units of spatial reference of the input dataset if the user

has selected the Keep Source Spatial Reference option. Otherwise - the units of spatial

reference of the reference dataset.

All the attributes of the input point dataset are transferred to the output

(Go to TOP)

Parameters

Expression Explanation

Function Name PointsAngleAndPosition

<input dataset> A String representing the input layer. Must be of Point type.

<reference

dataset>

A String representing the reference layer. Must be of Polyline type

<output dataset> A String - the full name of the output layer.

<search

tolerance>

A Double representing the Search tolerance to be used. The units of the

tolerance are the units of spatial reference of the input dataset if

KeepSourceSref = TRUE. Otherwise - the units of spatial reference of the

reference dataset.

{KeepSourceSref} A Boolean indicating whether the output to have the spatial reference of

the input layer. If False or 0, the spatial reference of the reference layer will

be used.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "PointsAngleAndPosition", "input dataset",

"reference dataset", "output dataset", "search tolerance", "KeepSourceSref"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "PointsAngleAndPosition" "input dataset" "reference

dataset" "output dataset" "search tolerance" "KeepSourceSref"

.NET using

ETGWOutX.dll

PointsAngleAndPosition(input dataset,reference dataset, output dataset,

search tolerance, KeepSourceSref)

ArcPy arcpy.PointsAngleAndPosition(input dataset, reference dataset, output

dataset, "search tolerance" , "KeepSourceSref")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Point Global Snap

Running programmatically

Snaps the features of a point layer to another layer (Point, Polyline or Polygon)

Inputs

A point layer to be snapped

A reference layer - point, polyline or polygon

Snap tolerance

Snap options

Keep Input Spatial Reference - If selected the output will have the spatial reference of the

input dataset, else the spatial reference of the reference dataset will be used

Outputs

A point layer - the points from the source layer will be moved to snap to the features of the

Snap Layer (if within the snap tolerances)

Options:

Vertices: The points will be snapped to the nearest vertex of the nearest feature from the

Snap layer

Nearest: If there is a vertex closer than the snap tolerance to the point to be snapped, the

point will snap to it, otherwise it will snap to the nearest edge.

Snap to reference Z values (only if the input and output are Z enabled)

Notes:

The units of the Snap Tolerance should be the units of spatial reference of the input dataset

if the user has selected the Keep Source Spatial Reference option. Otherwise - the units of

spatial reference of the reference dataset.

The Source and the Snap datasets can have different spatial references as long as they

have the same Geographic Coordinate systems.

Example:

Before Snap

After Snap - Option: Vertex

After Snap - Option: Nearest

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function Name SnapPoints

<input dataset> A String representing the input layer. Must be of Point type.

<reference

dataset>

A String representing the reference layer. Must be of Polyline type

<output dataset> A String - the full name of the output layer.

<

SnapTolerance>

A Double representing the Snap Tolerance to be used. The units of the

tolerance are the units of spatial reference of the input dataset if

KeepSourceSref = TRUE. Otherwise - the units of spatial reference of the

reference dataset.

{snap option} A String indicating the snap option to be used. Valid inputs: "Vertex" or

"Nearest". Default = "Nearest"

{snapToZ} A Boolean indicating whether to snap to Z values (if the reference dataset

has Z values). Default = False.

{KeepSourceSref} A Boolean indicating whether the output to have the spatial reference of

the input layer. If False or 0, the spatial reference of the reference layer will

be used.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "SnapPoints", "input dataset", "reference

dataset", "output dataset", " SnapTolerance", "snap option", "snapToZ",

"KeepSourceSref"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "SnapPoints" "input dataset" "reference dataset"

"output dataset" "SnapTolerance" "snap option" "snapToZ" "KeepSourceSref"

.NET using

ETGWOutX.dll

SnapPoints(input dataset,reference dataset, output dataset, SnapTolerance,

snap option, snapToZ, KeepSourceSref)

ArcPy arcpy.SnapPoints(input dataset, reference dataset, output dataset,

"SnapTolerance" , "snap option", "snapToZ", "KeepSourceSref")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,

you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Point Intersection

Running programmatically

Creates a point feature class with the intersection points of two polyline layers or a polyline layer and

the boundaries of the polygons from a polygon layer.

Inputs:

A polyline layer

A polyline or a polygon layer

Outputs:

A point layer - a point in each intersection between polylines from different layers .

Notes:

The two layers should have spatial references with the same Geographic Coordinate

Systems

If you need a point intersection of the boundaries of two polygon layers, convert one of the

layers to polyline first.

Sources: A polygon and a polyline datasets

Resulting points

(Go to TOP)

Parameters

Expression Explanation

Function Name PointIntersection

<input dataset> A String representing the input layer. Must be of Polyline type.

<reference

dataset>

A String representing the reference layer. Must be of Polyline or Polygon

type

<output dataset> A String - the full name of the output layer.

{TransferSourceAtt} A Boolean indicating whether the attributes of the source layer to be

transferred to the resulting points.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "PointIntersection", "input dataset", "reference

dataset", "output dataset", "TransferSourceAtt"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "PointIntersection" "input dataset" "reference dataset"

"output dataset" "TransferSourceAtt"

.NET using

ETGWOutX.dll

PointIntersection(input dataset,reference dataset, output dataset,

TransferSourceAtt)

ArcPy arcpy.PointIntersection(input dataset, reference dataset, output dataset,

"TransferSourceAtt")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Points To Rectangles

Running programmatically

Creates rectangles from points in a point dataset and user defined width, height rotation angle and
location of the point.

Inputs:

A Point feature class

Rectangle Width. The width can be fixed for all points or different assigned from the values

in a numeric field of the point attribute table

Rectangle Height. The height can be fixed for all points or different assigned from the

values in a numeric field of the point attribute table

Rotation angle. The angle can be fixed for all points or different assigned from the values in

a numeric field of the point attribute table

Point location. This parameter defines what will be the location of the resulting rectangles in

relation to the original points.

Outputs:

New polygon feature class. All the original field values will be transferred from the points to

the polygons.

Notes:

The values for the Width and the Height should be in the units of the spatial reference of the

input Point dataset

The angle (if used) should be in Decimal Degrees and have Polar orientation - East = 0,

anti-clockwise

Examples:

Width = 300, Height = 200, Angle = 15, Location = "Center"

Width = 300, Height = 200, Angle = 15, Location = "LL" (Lower Left)

Width = 300, Height = 200, Angle = 0, Location = "UR" (Upper Right)

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function Name PointsToRectangles

<input dataset> A String representing the input layer. Must be of Point type.

<output

dataset>

A String - the full name of the output layer.

<Location> Required. A String -This parameter defines what will be the location of the

resulting rectangles in relation to the original points:

"LL" - Lower Left corner of the rectangles will be located on the

input point.

"LR" - Lower Right corner of the rectangles will be located on the

input point.

"UL" - Upper Left corner of the rectangles will be located on the

input point.

"UR" - Upper Right corner of the rectangles will be located on the

input point.

Any other string used will cause the centers of the rectangles to be

located on the input point.

{Width} A Double representing the rectangle width

{WidthField} A String representing the name of a field in the in the attribute table of the

input dataset. The field has the values for the size of the polygons to be

created.

{Height} A Double representing the rectangle height

{HeightField A String representing the name of a field in the in the attribute table of the

input dataset field name. The field has the values for the height of the

rectangles to be created.

{RotationAngle} A Double representing the rotation angle.

{AngleField} A String representing the name of a field in the in the attribute table of the

input dataset field name. The field has the values for the rotation angle of the

rectangles to be created. The angle should be in Decimal Degrees and have

Polar orientation - East = 0, anti-clockwise.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "PointsToRectangles", "input dataset", "output

dataset", "Location", "Width", "", "Height", "", "RotationAngle"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "PointsToRectangles" "input dataset" "output dataset"

"Location" "Width" "" "Height" "" "RotationAngle"

.NET using

ETGWOutX.dll

PointsToRectangles(input dataset, output dataset, Location, Width, "", Height,

"", RotationAngle)

ArcPy arcpy.PointsToRectangles(input dataset, output dataset, "Location" , "Width",

"", "Height", "", "RotationAngle")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Reverse Geocoding

Running programmatically

Uses a reference polyline (street centerlines) layer to assign addresses to the points from a point
layer. Allows transfer of any additional attributes.

Inputs:

A point layer which features are to be assigned addresses

A reference polyline layer that will be used as a source for the addresses

The type of address data

Single

Range Continuous - From and To address fields expected

Range Address - Two pairs (Left & Right) address fields expected. The side of the

points taken into account.

Search distance

Additional fields to be transferred to the points

Keep Input Spatial Reference - If selected the output will have the spatial reference of the

input dataset, else the spatial reference of the reference dataset will be used

Outputs:

A point feature class with addresses assigned to the points

Notes:

Range attributes fields should be numeric fields.

The units of the Search Tolerance should be the units of spatial reference of the input

dataset if the user has selected the Keep Source Spatial Reference option. Otherwise - the

units of spatial reference of the reference dataset.

The Source and the Snap datasets can have different spatial references as long as they

have the same Geographic Coordinate systems.

Example:

Address range

Single range

(Go to TOP)

Parameters

Expression Explanation

Function Name ReverseGeocoding

<input dataset> A String representing the input layer. Must be of Point type.

<reference

dataset>
A String representing the reference layer. Must be of Polyline type

<output dataset> A String - the full name of the output layer.

<search

tolerance>

A Double representing the Search tolerance to be used. The units of the

tolerance are the units of spatial reference of the input dataset if

KeepSourceSref = TRUE. Otherwise - the units of spatial reference of the

reference dataset.

<Type>
A String indicating the type of address data - valid values - Single,

Continuous, Address

{LeftFromField}

A String representing a field name in the Reference dataset source for the

start address on the left side of the road. If the type is Continuous - the

start address

{LeftToField}

A String representing a field name in the Reference dataset source for the

end address on the left side of the road. If the type is Continuous - the end

address

{RightFromField}

A String representing a field name in the Reference dataset source for the

start address on the right side of the road. If the type is Continuous not

used.

{RightToField}

A String representing a field name in the Reference dataset source for the

end address on the right side of the road. If the type is Continuous not

used.

{AdditionalFields}

A String representing a list of additional field names which values will be

transferred to the points - separator - semi-colon (;) - Example: "field1;

field2;"

{KeepSourceSref}

A Boolean indicating whether the output to have the spatial reference of

the input layer. If False or 0, the spatial reference of the reference layer will

be used.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python
subprocess.call([ETGWPath, "ReverseGeocoding", "input dataset",

"reference dataset", "output dataset", "search tolerance", "Type",

"LeftFromField", "LeftToField", "RightFromField", "RightToField",

"AdditionalFields", "KeepSourceSref"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "ReverseGeocoding" "input dataset" "reference

dataset" "output dataset" "search tolerance" Type" "LeftFromField"

"LeftToField" "RightFromField" "RightToField" "AdditionalFields"

"KeepSourceSref"

.NET using

ETGWOutX.dll

ReverseGeocoding(input dataset,reference dataset, output dataset, search

tolerance, Type, LeftFromField, LeftToField, RightFromField, RightToField,

AdditionalFields, KeepSourceSref)

ArcPy

arcpy.ReverseGeocoding(input dataset, reference dataset, output dataset,

"search tolerance", "Type", "LeftFromField", "LeftToField", "RightFromField",

"RightToField", "AdditionalFields", "KeepSourceSref")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Create Station Points

Running programmatically

Creates equally spaced points based on the source polyline layer and the user specified distance
between the points.

Inputs:

A polyline feature layer

Distance between stations

Output spatial reference

Outputs:

New Point layer with points distributed along the input polylines based on the user specified

distance between the stations

The attributes of the original polylines are preserved

The following fields are added to the point attribute table

[ET_ID] - the FID of original polylines.

[ET_IDP] - this is a unique number identifying each part of the polylines. If a

polyline with FID = 356 has 3 parts, the corresponding points will have values in

this fields 356_0, 356_1 and 356_2.

[ET_X] - the X coordinates of the resulting points

[ET_Y] - the Y coordinates of the resulting points

[ET_Angle] - the angle of the polyline in this point.

[ET_Station] - the distance from the start point of the polyline to this point

Notes:

The distance is measured in the units of the output spatial reference

The default output spatial reference is the one of the input polyline dataset

The user can specify a different output spatial reference, but it has to have the same

Geographic Coordinate System as the one of the input dataset

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

StationPoints

<input

dataset>

A String representing the input layer. Must be of Polyline type.

<output

dataset>

A String - the full name of the output layer.

<Station

Distance>

A Double representing distance between the station lines.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program

Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "StationPoints", "input dataset", "output

dataset", "Station Distance"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "StationPoints" "input dataset" "output dataset" "Station

Distance"

.NET using

ETGWOutX.dll

StationPoints(input dataset, output dataset, Station Distance)

ArcPy arcpy.StationPoints(input dataset, output dataset , "Station Distance")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Thin Points

Running programmatically

Reduces the number of points in a point dataset based on their spatial location.

Points that are closer to each other than the tolerance specified will be converted to a single

point.

The values in the field specified will be summarized for each cluster and saved in the point

representing this cluster.

Optionally a copy of the original layer will be created. The attribute table will have a field

enabling a back link from the generalized points to the original ones to be created.

Inputs:

A Point feature class

Generalization tolerance - should be smaller than 20% of the smaller side of the extent

envelope of the input dataset.

Data field - if specified the output feature class will have a field in which the value for each

resulting point will be the sum of the values of the points pertaining to this cluster.

Outputs:

New point layer. Fields:

[ET_Count] - the number of points from the input feature class represented by

each output point

[ET_Link] - added only if the "Add Link from the original points" option is selected.

Optional point layer - a copy of the original points with a link field added.

Notes:

If no Generalization tolerance of 0 is specified only the exact duplicates will be removed

Examples:

Input Dataset

Result Dataset labeled with the number of points they represent (ET_Count field)

Overlay

(Go to TOP)

Parameters

Expression Explanation

Function

Name

ThinPoints

<input

dataset>

A String representing the input layer. Must be of Point type.

<output

dataset>

A String - the full name of the output layer.

<tolerance> A Double representing the Generalization tolerance (in the units of the spatial

reference of the input dataset) to be used

{LinkName} A String representing the full name of the optional output layer.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program

Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "ThinPoints", "input dataset", "output dataset",

"tolerance", "LinkName"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "ThinPoints" "input dataset" "output dataset"

"tolerance" "LinkName"

.NET using

ETGWOutX.dll

ThinPoints(input dataset, output dataset, tolerance, LinkName)

ArcPy arcpy.ThinPoints(input dataset, output dataset, "tolerance" , "LinkName")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,

you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Points To Regular Polygons

Running programmatically

Creates regular polygons from points in a point dataset and user defined number of sides, size and
rotation angle. The source point will be located in the center of the polygons.

Inputs:

A Point feature class

Number of sides of the polygons to be created.

Size represents option - depending on the user input the size parameter can represent

The side of the polygon

The radius of the circle inscribed in the polygon

The radius of the circle circumscribed around the polygon.

Size of the polygon. The size can be fixed for all points or different assigned from the values

in a numeric field of the point attribute table

Rotation angle. The rotation angle can be fixed for all points or different assigned from the

values in a numeric field of the point attribute table

Outputs:

New polygon feature class. All the original field values will be transferred from the points to

the polygons.

Notes:

The values for the size should be in the units of the spatial reference of the input Point

dataset

The angle (if used) should be in Decimal Degrees and have Polar orientation - East = 0,

anti-clockwise. The angle defines the location of the start vertex of the polygon.

Examples:

Size = 30 , Angle = 0, Number sides = 5, Option - Radius Inscribed

Size = 30 , Angle = 0, Number sides = 5, Option - Radius Circumscribed

Size = 30 , Angle = 0, Number sides = 5, Option - Side

Size = 30 , Angle = 0, Number sides = 6, Option - Radius Circumscribed

Size = 30 , Angle = 0, Number sides = 7, Option - Radius Circumscribed

Size = 30 , Angle = 0, Number sides = 8, Option - Radius Circumscribed

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function Name PointsToRegularPolygons

<input dataset> A String representing the input layer. Must be of Point type.

<output dataset> A String - the full name of the output layer.

<NumberSides> A Double representing the Generalization tolerance (in the units of the

spatial reference of the input dataset) to be used

<SizeRepresents> Required. A String indicating the meaning of the <SIZE> parameter

RadiusIn - radius of the inscribed circle

RadiusOut - radius of the circumscribed circle

Side - the side of the polygon

{Size} A Double representing the size (see above for options)

{SizeField} A String representing the name of a field in the in the attribute table of the

input dataset. The field has the values for the size of the polygons to be

created.

{RotationAngle} A Double representing the rotation angle.

{AngleField} A String representing the name of a field in the in the attribute table of the

input dataset. The field has the values for the rotation angle of the

polygons to be created.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "PointsToRegularPolygons", "input dataset",

"output dataset", "NumberSides", "SizeRepresents", "Size", "",

"RotationAngle"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "PointsToRegularPolygons" "input dataset" "output

dataset" "NumberSides" "SizeRepresents" "Size" "" "RotationAngle"

.NET using

ETGWOutX.dll

PointsToRegularPolygons(input dataset, output dataset, NumberSides,

SizeRepresents, Size, "", RotationAngle)

ArcPy arcpy.PointsToRegularPolygons(input dataset, output dataset,

"NumberSides" , "SizeRepresents", "Size", "", "RotationAngle")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Clean Polylines

Running programmatically

Ensures topological correctness of a polyline feature data set.

Inputs:

A polyline feature layer

Fuzzy tolerance

Outputs:

New topologically correct Polyline dataset

Nodes will be created in all intersection points

Redundant data (vertices and nodes closer to each other than the fuzzy tolerance)

will be eliminated.

Each set of duplicate lines (closer to each other than the fuzzy tolerance) will be

replaced by a single polyline. This polyline will carry the attributes of one of the

original polylines

The attributes of the input data set are preserved.

Optional Polyline layer that identifies the duplicates in the input data set.

The duplicates layer has all the fields from the input data set.

The attributes of the polylines are these that have not been preserved in the clean

layer. Example:. If two polylines with attributes "A" and "B" are running on top of

each other. The clean layer will contain only one of them e.g. "A". The duplicates

layer will contain the other one -"B"

Notes :

The default Fuzzy tolerance is calculated from the extents of the input layer using the

formulae (W + H) / 2000000 where W and H are the with and height of the extent envelope.

Larger values of the Fuzzy tolerance may be used to clean some bigger Over and Under

shoots, but it might lead to unwanted approximation of the input shapes. The better option is

to use Fuzzy tolerance close to the default and then clean the remaining Dangling Nodes

with the "Clean Dangling Nodes Wizard"

Use Export Nodes Wizard to check the status of a data set. It will analyze the nodes of a

polyline layer and will create a Point layer with classified nodes.

Example:

Input Layer (with analyzed nodes)

After Clean (with analyzed nodes)

Duplicates layer (The Clean layer as background)

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

CleanPolylines

<input

dataset>

A String representing the input layer. Must be of Polyline type.

<output

dataset>

A String - the full name of the output layer.

<Fuzzy

Tolerance>

A Double representing the Fuzzy Tolerance.

<duplicates

dataset>

A String - the full name of the output layer containing the duplicates.

{Sort Field} A String representing a field to be used to sort the data before processing. The

first features in the input dataset after sorting using that field will have priority

during the cleaning process.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "CleanPolylines", "input dataset", "output

dataset", "Fuzzy Tolerance","duplicates dataset", "Sort Field"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "CleanPolylines" "input dataset" "output dataset"

"Fuzzy Tolerance" "duplicates dataset" "Sort Field"

.NET using

ETGWOutX.dll

CleanPolylines(input dataset, output dataset, Fuzzy Tolerance,duplicates

dataset, Sort Field)

ArcPy arcpy.CleanPolylines(input dataset, output dataset, "Fuzzy

Tolerance","duplicates dataset", "Sort Field")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Clean Dangling Nodes

Running programmatically

Cleans the dangling nodes from a polyline layer using user specified dangling tolerance

Inputs:

A polyline feature layer

Dangling tolerance

Outputs:

New polyline feature class

Over-shoots: All the Polylines having a Dangling node with length less than the

dangling tolerance will be deleted

Under-shoots: All the Polylines having a Dangling node and length larger than the

tolerance will be processed.

The function first checks whether the extension of the polyline in the

direction of the segment containing the dangling node intersects existing

polyline (within the specified tolerance) and if so extends the segment to

the intersection point

If the "Snap to nearest feature" option is selected the function checks

whether the dangling node is closer than the tolerance specified to

another feature and snaps to the closest feature

If the dangling feature is snapped to another feature, the latest is split - a regular

node created.

The attributes of the input data set are preserved.

Notes :

Use Export Nodes Wizard to check the status of a data set. It will analyze the nodes of a

polyline layer and will create a Point feature class with classified nodes.

It is recommended before proceeding with cleaning the dangling nodes to use the Clean

Polyline Wizard to ensure that all the polylines are intersected and the very small over and

undershoots are cleaned with the Fuzzy tolerance.

A Fuzzy tolerance of 0 may be used if the original shapes have to be preserved exactly the

same. In this case only the intersections will be created

Examples:

Before Clean Dangles

After Clean - No "Nearest Snap" used

After Clean - "Nearest Snap" used

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

CleanDangles

<input

dataset>

A String representing the input layer. Must be of Polyline type.

<output

dataset>

A String - the full name of the output layer.

<Dangling

Tolerance>

A Double representing the tolerance to be used. The polylines with dangling

nodes within distance smaller than this value to existing features (depending on

the options used) will be extended/snapped to the closest existing feature

{Snap

Nearest}

A Boolean - if True, the ends of the dangling polylines that could not be

snapped to an existing polyline by extending in the direction of the last segment

or to an existing node will be snapped (if the dangling node is within a distance

smaller than the to an existing polyline) to the closest point of the closest

polyline

{Fuzzy

Tolerance}

A Double representing the Fuzzy tolerance (in the units of the input dataset).

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "CleanDangles", "input dataset", "output

dataset", "Dangling Tolerance", "Snap Nearest", "Fuzzy Tolerance"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "CleanDangles" "input dataset" "output dataset"

"Dangling Tolerance" "Snap Nearest" "Fuzzy Tolerance"

.NET using

ETGWOutX.dll

CleanDangles(input dataset, output dataset, Dangling Tolerance, Snap

Nearest, Fuzzy Tolerance)

ArcPy arcpy.CleanDangles(input dataset, output dataset, "Dangling Tolerance",

"Snap Nearest", "Fuzzy Tolerance")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Clean Pseudo Nodes

Running programmatically

Combines polylines, which share a pseudo node, based on user specified attributes. The resulting
polyline data set does not contain multi-part polylines. The topology of the data set is preserved. The

attribute update rules include range values update

Inputs

A polyline feature layer

Fields to be used for dissolving

Update rules for the rest of the fields to be transferred

Outputs:

An aggregated polyline feature class

Only the polylines which share a pseudo node that have the same values for the dissolve

fields will be aggregated

No multi-part polylines will be created.

The attributes will be transferred according the user specified rules. For the fields with no

specified update rule, date and blob fields, the aggregated feature will carry the attributes of

the first feature.

Notes:

The Clean Pseudo Nodes function is similar to Dissolve but has several advantages:

Multiple dissolve fields can be used

Only the polylines which share a pseudo node that have the same values for the

dissolve fields will be aggregated

It preserves the topology of the polyline layer - no regular node will be removed as

a result of the procedure. See example

The attribute update rules include rules to handle single and address ranges. See

example

It is recommended the Explode function to be used before dissolve in order to ensure

proper distribution of the attribute values of the numeric fields.

If no dissolve field is selected, all the pseudo nodes will be removed without considering the

attribute values.

Range attributes from numeric fields can be handled. The records that have range values

containing non numeric characters will be copied arbitrary to the resulting features.

Example:

Input Layer. Dissolve field = "Streetname"

Attribute Table

After Clean Pseudo Nodes. Update rules

"L_F_ADD" - Address Range - Paired field - "L_T_ADD"

"R_F_ADD - Address Range - Paired field "R_T_ADD"

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

CleanPseudoNodes

<input

dataset>

A String representing the input layer. Must be of Polyline type.

<output

dataset>

A String - the full name of the output layer.

{Dissolve

Fields}

A String representing a list (separated with ";") with the field names to be used

for dissolving.

{Update

Rules}

A String representing a list (separated with ";") with the field names and update

rules. Valid rules are: "FIRST", "LAST", "MIN", "MAXLENGTH", "MAX", "SUM",

"RANGECONTINUOUS", "RANGEADDRESS" depending on the field type.

Example: "Field1 RangeAddress Field2;Field3 First;Field3 MaxLength"

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "CleanPseudoNodes", "input dataset", "output

dataset", "Dissolve Fields", "Update Rules"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "CleanPseudoNodes" "input dataset" "output dataset"

"Dissolve Fields" "Update Rules"

.NET using

ETGWOutX.dll

CleanPseudoNodes(input dataset, output dataset, Dissolve Fields, Update

Rules)

ArcPy arcpy.CleanPseudoNodes(input dataset, output dataset, "Dissolve Fields",

"Update Rules")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Split Polylines

Running programmatically

Splits the features of a polyline layer.

Inputs

A polyline layer which features are to be split

A method to be used for splitting

In all vertices

Equal segments

Exact length + remainder - the polylines will be split using the exact length

specified by the user. The last segment will have length equal to the remainder of

the splitting. For example if a polyline with length = 60 meters is split using length

of 25 meters, three segments with lengths 25, 25 and 10 will be created.

Equal Length - the user specified length is adjusted in order all resulting segments

to have equal length. For example if a polyline with length = 60 meters is split

using length of 25 meters, two segments with lengths of 30 meters will be created.

Number of vertices per feature

Attribute Cell SizeY for each field

Outputs

A polyline feature class - new node created in each split point. The attributes will be

distributed according the user specified attribute Cell SizeY.

Notes:

Range attributes from numeric fields can be handled.

If the Segment length method is used

all the segments will have the user specified length except for the last one

if the assigned length is larger than the length of a specific polyline, the polyline

will be copied to the output as is

the splitting starts always from the start points (From Node) of the polylines

Examples:

Before Split

Split in all Vertices

Split in equal segments

Exact length + remainder

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

SplitPolylines

<input

dataset>

A String representing the input layer. Must be of Polyline type.

<output

dataset>

A String - the full name of the output layer.

<Split

Option>

Required. A String valid values:

"Vertex"

"NumberIntervals"

"EqualLength"

"Length"

"NumberVertices"

{Split

Tolerance}

A Number which value depending on the option defines:

"Vertex" - not used

"NumberIntervals" - the number of intervals per polyline

"EqualLength" - the desired length of the output polylines

"Length" - the length of the output polylines

"NumberVertices" - the number of vertices per polyline.

{Update

Rules}

A String representing a list (separator ";") of fields and update rule for each

field. Example: "Field1 AddressRange Field2; Field3 Copy; Field4 Proportion"

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "SplitPolylines", "input dataset", "output

dataset", "Split Option", "Split Tolerance", "Update Rules"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "SplitPolylines" "input dataset" "output dataset" "Split

Option" "Split Tolerance" "Update Rules"

.NET using

ETGWOutX.dll

SplitPolylines(input dataset, output dataset, Split Option, Split Tolerance",

Update Rules)

ArcPy arcpy.SplitPolylines(input dataset, output dataset, "Split Option" , "Split

Tolerance", "Update Rules")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Split Polyline Layer

Running programmatically

Splits a polyline layer with the features of a Point, Polyline or Polygon layer.

Inputs

A polyline layer which features are to be split

A point, polyline or polygon layer which features will be used for splitting

Attribute update rules for each field

Search distance (Only if a point layer is used as a split layer)

Outputs

A polyline feature class - a node created in each intersection point between the features

from the input polyline layer and the split layer.

Notes:

Range attributes from string and numeric fields can be handled.The records that have range

values containing non numeric characters will be copied to the resulting features.

If a point layer is used as a split layer only the points that are within the search tolerance

from the features of the input polyline layer will be used for splitting.

Examples:

Polyline Layer with Polyline Layer.

Attributes updated with Range Address split rule

Before Split

After Split

Polyline Layer with Point Layer. Only the points within the search tolerance from the polylines are
used.

Before Split

After Split

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

SplitPolylinesWithLayer

<input

dataset>

A String representing the input layer. Must be of Polyline Type.

<Reference

Dataset>

A String representing the reference layer.

<output

dataset>

A String - the full name of the output layer.

{Search

Tolerance}

A Double representing the Cut-Off Distance to be used. The units of the

tolerance are the units of spatial reference. Used only if the Reference Layer is

of Point type.

{Update

Rules}

A String representing a list (separator ";") of fields and update rule for each

field. Example: "Field1 AddressRange Field2; Field3 Copy; Field4 Proportion"

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "SplitPolylinesWithLayer", "input dataset",

"Reference Dataset", "output dataset", " Search Tolerance", "Update Rules"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "SplitPolylinesWithLayer" "input dataset" "Reference

Dataset" "output dataset" "Search Tolerance" "Update Rules"

.NET using

ETGWOutX.dll

SplitPolylinesWithLayer(input dataset,Reference Dataset, output dataset,

Search Tolerance, Update Rules)

ArcPy arcpy.SplitPolylinesWithLayer(input dataset, Reference Dataset, output

dataset, "Search Tolerance" , "Update Rules")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Polyline Global Snap

Running programmatically

Snaps the features of a polyline layer to another layer (Point, Multipoint, Polyline or Polygon)

Inputs

A polyline layer to be snapped

A snap layer - point, polyline or polygon

Snap tolerance

Snap options1 (Snap What)

Snap options2 (Snap To What)

Snap to reference Z values (only if the input and output are Z enabled)

Outputs

A polyline layer - the polylines from the source layer will be moved to snap to the features of

the Snap Layer (if within the snap tolerance)

Options:

Snap Options 1 (Snap What) - this options lets the user set which elements of the source

polylines to be used for snapping

Nodes: Only nodes (end points) of the polylines will be snapped

Vertices: All the vertices of the source polylines will be used.

Insert Vertices: This option will get the vertices from the features of the snap layer

and will insert new vertices into the source polylines. The new vertices together

with the original ones will be used for snapping. This option is slower than the

other ones, but gives the best snapping results especially if the polylines to be

snapped have much less vertices than the ones from the Snap layer.

Snap Options 2 (Snap To What)

Vertices: The polylines will be snapped to the nearest vertex of the nearest feature

from the Snap layer

Nearest edge: The polylines will be snapped to the nearest point of the nearest

feature from the Snap layer

Vertices and Edges: If there is a vertex closer than the snap tolerance to the

polylines (their elements defined in Options 1) to be snapped, the polyline will

snap to it, otherwise it will snap to the nearest edge.

Snap to Z

Notes:

The snap distance should be in the units of the input dataset.

The Source and the Snap datasets can have different spatial references as long as they

have the same Geographic Coordinate systems.

Example: Red - Source Polyline; Black - Snap Polyline; Green - Snapped Polyline

Before Snap

After Snap - Option1: Nodes, Option2: Vertices

After Snap - Option1: Vertices, Option2: Vertices

After Snap - Option1: Insert Vertices, Option2: Vertices and Edges

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function Name SnapPolylines

<input dataset> A String representing the input layer. Must be of Polyline type.

<Reference

Dataset>

A String representing the layer to be used to snap to.

<output dataset> A String - the full name of the output layer.

<Snap

Tolerance>

A Double representing the Snap Tolerance (in the units of the spatial

reference of the input dataset or the Reference Dataset is KeepSourceSref

= FALSE).

<Snap What> Required. A String indicating what parts of the input polygons will be

snapped. Possible values:

Node - only the nodes of the source polylines will be snapped.

Vertex - the vertices of the source polylines will be snapped.

InsertVertex - the vertices from the features of the Reference

Dataset will be inserted (if closer to the input dataaset) as new

vertices into the source polylines. The new vertices together with

the original ones will be used for snapping. This option is slower

than the other ones, but gives the best snapping results

especially if the polygons to be snapped have much less vertices

than the ones from the Reference Dataset.

<Snap To What> Required. A String indicating to what parts of the reference geometries the

input polygons will try to snap. Possible values:

Vertex - the input polylines will be snapped only to the vertices of

the geometries from the reference dataset.

All - the input polylines will be snapped to the vertices or nearest

edge of the geometries from the reference dataset.

{Snap To Z} Optional. A Boolean indicating whether the input geometries will snap the

the Z values of the geometries from the Reference Dataset. Only if both

dataset have Z values.

{KeepSourceSref} Optional. A Boolean indicating whether the output to have the spatial

reference of the input layer. If False or 0, the spatial reference of the

reference layer will be used.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "SnapPolylines", "input dataset", "Reference

Dataset", "output dataset", "Snap Tolerance", "Snap What", "Snap To What",

"Snap To Z", "KeepSourceSref"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "SnapPolylines" "input dataset" "Reference Dataset"

"output dataset" "Snap Tolerance" "Snap What" "Snap To What" "Snap To Z"

"KeepSourceSref"

.NET using

ETGWOutX.dll

SnapPolylines(input dataset, Reference Dataset, output dataset, Snap

Tolerance, Snap What, Snap To What, Snap To Z,KeepSourceSref)

ArcPy arcpy.SnapPolylines(input dataset, Reference Dataset, "output dataset" ,

"Snap Tolerance", "Snap What", "Snap To What", "Snap To Z",

"KeepSourceSref")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Buffer Polylines

Running programmatically

Creates buffer polygons from the polylines of the input dataset. The user can specify the side of the
polyline (Left, Right or Both) on which the buffer to be created as well as the shape of the buffer at

the end of the polylines - Round or Flat. The buffer distance (in the units of the spatial reference of
the input dataset) can be entered as a number (equal for all input polylines)or a numeric field. No
negative buffer distance is accepted.

Inputs:

A polyline feature layer

Buffer distance - a number (the same buffer distance will be used for all input polylines) or

the name of a numeric field in the polyline attribute table that has the buffer distance for

each input polyline.

Side of the buffer:

Left - the buffer will be created only on the left side of the polylines (the physical

orientation of the polyline is used to define the side).

Right - the buffer will be created only on the right side of the polylines (the physical

orientation of the polyline is used to define the side).

Both - the buffer will be created only on the both sides of the polylines.

Shape of the buffer at the end of the polyline

Round - the buffer at the ends of the polyline will have a circular shape.

Flat - the buffer at the end of the polyline will be closed with a straight line passing

through the start/end point of the polyline

Dissolve option - the boundaries of the intersecting buffers will be dissolved. The original

attributes will not be preserved if the dissolve option is used.

Outputs:

New polygon feature class

Notes :

No buffers will be created for the polylines that have buffer distance less or equal to 0.

The attributes of the polylines will be transferred to the resulting polygons only if the

Dissolve option is NOT used.

If the "Left" or "Right" option is used, no buffers will be created for the polylines for which

the Left and Right buffers intersect. The log file will contain a record for the IDs of the

polylines for which the requested buffer could not be created (see example below).

If the "Flat" option is used and the left and right boundary cannot be connected with a

straight line with length equal to 2 x the buffer distance, a round end will be created. The log

file will contain a record for the IDs of the polylines for which a "Flat" buffer could not be

created (see example below).

Self-intersecting polylines will be simplified and each part will be buffered separately.

Examples:

Round buffer both sides (with dissolve option)

Flat buffer both sides

Flat buffer on the left side

Round buffer on the right side

Buffer on the left side cannot be created.

Round end will be created if a complete flat end cannot be created.

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

BufferPolylines

<input

dataset>

A String representing the input layer. Must be of Polyline type.

<output

dataset>

A String - the full name of the output layer.

<Buffer

Side>

Required. A String representing the side of the polylines on which the buffers

will be created. The available options are: Left, Right and Both

<Buffer End> Required.Required. A String representing the shape of the buffer at the ends of

the polylines. The available options are: Round - the buffer at the ends of the

polyline will have a circular shape. Flat - the buffer at the end of the polyline will

be closed with a straight line passing through the start/end point of the polyline

{Buffer

Distance}

A Double representing the buffer distance in the units of the Spatial Reference

of the input layer.

{Buffer Field} A String representing the name of a field in the in the attribute table of the input

dataset. The field has the values for the buffer distance.

{Dissolve

Buffers}

A Boolean. If True - the boundaries of the intersecting buffers will be dissolved.

{Dissolve

Fields}

A String representing a list (separated with ";") with the field names to be used

for dissolving.

{Statistic

Fields}

A String representing a list (separated with ";") with the field names for which

statistics will be created. Example: "Field1 Sum;Field2 Max;Field3 Min"

{Create

Multiparts}

A Boolean indicating whether the function will create multipart polygons.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "BufferPolylines", "input dataset", "output

dataset", "Buffer Side", "Buffer End", "Buffer Distance", "", "Dissolve Buffers",

"Dissolve Fields", "Statistic Fields", "Create Multiparts"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "BufferPolylines" "input dataset" "output dataset"

"Buffer Side" "Buffer End" "Buffer Distance" "" "Dissolve Buffers""Dissolve

Fields""Statistic Fields""Create Multiparts"

.NET using

ETGWOutX.dll

BufferPolylines(input dataset, output dataset, Buffer Side, Buffer End, "",

Buffer Distance, "", Dissolve Buffers,Dissolve Fields,Statistic Fields,Create

Multiparts)

ArcPy arcpy.BufferPolylines(input dataset, output dataset, "Buffer Side" , "Buffer

End", "Buffer Distance", "", "Dissolve Buffers", "Dissolve Fields" , "Statistic

Fields", "Create Multiparts")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Export Nodes

Running programmatically

Analyzes the nodes of a polyline layer and exports them as a point layer.

Inputs:

A polyline feature layer

Types of nodes to be exported

Outputs:

New point layer

Contains points representing the specified node types

Regular nodes - node where more than two polylines intersect

Pseudo nodes - occur where a single line connects with itself or where

only two polylines intersect

Dangling nodes - unconnected nodes of dangling polylines

Several fields are added to the point attribute table:

[ET_Type] - the type of node.

[ET_Valency] - the number of polylines that connect in the node. For a

Dangling node Valency = 1, for a Pseudo node Valency = 2, for a

Regular node Valency >=3

[PL_LINK1], [PL_LINK2] ...[PL_LINK9] carrying the values in the

specified as a parameter link filed of the polylines that intersect in a node

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

ExportNodes

<input

dataset>

A String representing the input layer. Must be of Polyline type.

<output

dataset>

A String - the full name of the output layer.

<Export

Dangling>

A Boolean indicating whether the Dangling nodes will be exported

<Export

Pseudo>

A Boolean indicating whether the Pseudo nodes will be exported.

<Export

Regular>

A Boolean indicating whether the Regular nodes will be exported

<Link Field> A String representing the name of the field which values will be used as links

between the nodes and the source polylines

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "ExportNodes", "input dataset", "output

dataset", "Export Dangling", "Export Pseudo", "Export Regular", "Link Field"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "ExportNodes" "input dataset" "output dataset" "Export

Dangling" "Export Pseudo" "Export Regular" "Link Field"

.NET using

ETGWOutX.dll

ExportNodes(input dataset, output dataset, Export Dangling, Export Pseudo,

Export Regular, Link Field)

ArcPy arcpy.ExportNodes(input dataset, output dataset, "Export Dangling" , "Export

Pseudo", "Export Regular", "Link Field")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Renode Polylines

Running programmatically

Analyzes the nodes of a polyline layer and exports them as a point feature class. Creates links
between the nodes and corresponding polylines

Inputs:

A polyline feature layer

Outputs:

New point feature class

Contains points representing polyline nodes

Regular nodes - node where more than two polylines intersect

Pseudo nodes - occur where a single line connects with itself or where

only two polylines intersect

Dangling nodes - unconnected nodes of dangling polylines

Two fields are added to the point attribute table :

[ET_Type] - the type of node.

[ET_Valency] - the number of polylines that connect in the node. For a

Dangling node Valency = 1, for a Pseudo node Valency = 2, for a

Regular node Valency >=3

[ET_NodeId] - the ID of the nodes allowing link to the original polylines

A copy of the original polyline layer with two fields are added to the polyline attribute table

[ET_FNode] - the id of the From Node of the polyline - links to a point in the Node

feature class

[ET_TNode] - the id of the To Node of the polyline - links to a point in the Node

feature class

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

RenodePolylines

<input

dataset>

A String representing the input layer.

<Output

Node

Dataset>

A String - the full name of the output Nodes layer.

<Output

Polyline

Dataset>

A String representing the output polyline layer.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program

Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "RenodePolylines", "input dataset", "Output

Node Dataset", "Output Polyline Dataset"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "RenodePolylines" "input dataset" "Output Node

Dataset" "Output Polyline Dataset"

.NET using

ETGWOutX.dll

RenodePolylines(input dataset, Output Node Dataset,Output Polyline

Dataset)

ArcPy arcpy.RenodePolylines(input dataset, Output Node Dataset,Output Polyline

Dataset)

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Generalize Polylines

Running programmatically

Generalizes (reduces the number of vertices required to represent a polyline) the features of a
polyline layer using the Douglas-Poiker algorithm

Inputs:

A polyline feature layer

Generalize tolerance (maximum offset) - the maximum distance that the generalized

polyline will differ from the original one

Outputs:

New polyline feature class

The output feature class will contain all the features of the original data set

The attributes of the input data set are preserved.

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

GeneralizePolylines

<input

dataset>

A String representing the input layer. Must be of Polyline type.

<output

dataset>

A String - the full name of the output layer.

<Generalize

Tolerance>

A Double representing the Generalization tolerance (in the units of the spatial

reference of the input layer.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "GeneralizePolylines", "input dataset", "output

dataset", "Generalize Tolerance"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "GeneralizePolylines" "input dataset" "output dataset"

"Generalize Tolerance"

.NET using

ETGWOutX.dll

GeneralizePolylines(input dataset, output dataset, Generalize Tolerance)

ArcPy arcpy.GeneralizePolylines(input dataset, output dataset, "Generalize

Tolerance")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Densify Polylines

Running programmatically

Densifies (adds vertices to polyline at a user-specified tolerance) the features of a polyline layer.

Inputs:

A polyline feature layer

Maximum segment length

Outputs:

New polyline feature class

The output feature class will contain all the features of the original data set

The attributes of the input data set are preserved.

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

DensifyPolylines

<input

dataset>

A String representing the input layer. Must be of Polyline type.

<output

dataset>

A String - the full name of the output layer.

<Densify

Tolerance>

A Double representing the at which new vertices will be introduced.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program

Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "DensifyPolylines", "input dataset", "output

dataset", "Densify Tolerance"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "DensifyPolylines" "input dataset" "output dataset"

"Densify Tolerance"

.NET using

ETGWOutX.dll

DensifyPolylines(input dataset, output dataset, Densify Tolerance)

ArcPy arcpy.DensifyPolylines(input dataset, output dataset, "Densify Tolerance")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,

you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Smooth Polylines

Running programmatically

Smooth the features of a polyline layer using three different smoothing algorithms

Inputs:

A polyline feature layer

Smooth method

Bezier curve

The curve in general does not pass through any of the control points

(vertices of original polyline) except the first and last.

The curve is always contained within the convex hull of the control points

Approximate the original shape rather freely

Fast - good for polylines with many vertices (control points) that will

constrain the curve close to the original shape

B - Spline

The curve does not pass through any of the control points (vertices of

original polyline) except the first and last

Follows better than the Bezier curve the original shape

Depending on the "Freedom" parameter the smoothing occurs only in the

areas close to a vertex

B-Splines lie in the convex hull of the original polyline

Slower than the Bezier curve, but the results in many cases are much

better

T - Spline (Tension Spline)

The curve passes trough all the vertices of the original polyline

The degree of fit can be controlled with the "Tension" parameter

Suitable for smoothing curves with comparatively equally spaced

vertices

Fast with good approximation of the original polyline

Parameters depending on the method

The "Smoothness" parameter (Used in all methods) defines the number of points

in the output curve. The allowed values (2 to 20) in fact are point multiplier. The

number of vertices of the original polyline multiplied by this value will give the

number of vertices of the smoothed polyline. The larger the value of the

Smoothness parameter, the slower the process will be. In most of the cases a

value of 5 (default) will create smooth and representative polyline

The "Freedom" parameter (B-Spline only) defines how close to the original polyline

the curve will be. The allowed values are from 3 to 10. Smaller values give better

approximation. With large values the curve will become very similar to Bezier

curve

The "Tension" parameter (T-Spline only) defines how close to the original polyline

the curve will be. Increasing the tension is similar to pulling on the ends of a string

constrained to pass through the polyline vertices. allowed values are from 1 to

100.

Optional - Densification tolerance. In some cases the smooth parameters cannot restrict the

smoothing enough. The user can restrict the effect of the smoothing by introducing new

vertices in the shapes. See Densify function for details

Optional - Generalization tolerance. The smoothing introduces in the shapes many new

vertices. The user can decrease the number of vertices by using this option. See Generalize

function for details.

Outputs:

New polyline layer

The output layer will contain all the features of the original data set

The attributes of the input data set are preserved.

Notes :

With all methods the Start and End point of the polylines are preserved

All the methods implement generic algorithms.

The Generalization and Densification tolerances should be specified in the units of the

spatial reference of the input layer

Examples:

Smooth results: Dashed - Original; Red - Bezier; Green - B-Spline; Blue- T-Spline (Default
parameters)

Bezier

B-Spline

Green - Freedom = 3

Blue - Freedom = 5

T-Spline

Green - Tension = 30

Blue - Tension = 90

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function Name SmoothBezier

Function Name SmoothBSpline

Function Name SmoothTSpline

<input

dataset>

A String representing the input layer. Must be of Polyline type.

<output

dataset>

A String - the full name of the output layer.

<Smoothness> An Integer that defines the number of points in the output curve. The allowed

values (2 to 20) in fact are point multiplier. The number of vertices of the

original polyline multiplied by this value will give the number of vertices of the

smoothed polyline. The larger the value of the parameter, the slower the

process will be.

<Freedom> Only for B-Spline. An Integer that defines how close to the original polyline

the curve will be. The allowed values are from 3 to 10. Smaller values give

better approximation. With large values the curve will become very similar to

Bezier curve

<Tension> Only for T-Spline. An Integer that defines how close to the original polyline the

curve will be. Increasing the tension is similar to pulling on the ends of a

string constrained to pass through the polyline vertices. allowed values are

from 1 to 100.

{Densify

Before}

A Double representing the Densification tolerance. In some cases the smooth

parameters cannot restrict the smoothing enough. The user can restrict the

effect of the smoothing by introducing new vertices in the shapes. See

Densify function for details

{Generalize

After}

A Double representing the Generalization tolerance. The smoothing

introduces in the shapes many new vertices. The user can decrease the

number of vertices by using this option. See Generalize function for details.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

SmoothBezier

Language Syntax

Python subprocess.call([ETGWPath, "SmoothBezier", "input dataset", "output

dataset", "Smoothness", "Densify Before", "Generalize After"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "SmoothBezier" "input dataset" "output dataset"

"Smoothness" "Densify Before" "Generalize After"

.NET using

ETGWOutX.dll

SmoothBezier(input dataset, output dataset, Smoothness, Densify Before,

Generalize After)

ArcPy arcpy.SmoothBezier(input dataset, output dataset, "Smoothness" , "Densify

Before", "Generalize After")

SmoothBSpline

Language Syntax

Python subprocess.call([ETGWPath, "SmoothBSpline", "input dataset", "output

dataset", "Smoothness", "Freedom", "Densify Before", "Generalize After"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "SmoothBSpline" "input dataset" "output dataset"

"Smoothness" "Freedom" "Densify Before" "Generalize After"

.NET using

ETGWOutX.dll

SmoothBSpline(input dataset, output dataset, Smoothness, Freedom, Densify

Before, Generalize After)

ArcPy arcpy.SmoothBSpline(input dataset, output dataset, "Smoothness" ,

"Freedom", "Densify Before", "Generalize After")

SmoothTSpline

Language Syntax

Python subprocess.call([ETGWPath, "SmoothTSpline", "input dataset", "output

dataset", "Smoothness", "Tension", "Densify Before", "Generalize After"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "SmoothTSpline" "input dataset" "output dataset"

"Smoothness" "Tension" "Densify Before" "Generalize After"

.NET using

ETGWOutX.dll

SmoothTSpline(input dataset, output dataset, Smoothness, Tension, Densify

Before, Generalize After)

ArcPy arcpy.SmoothTSpline(input dataset, output dataset, "Smoothness" ,

"Tension", "Densify Before", "Generalize After")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Flip Polylines

Running programmatically

Changes the direction of the polylines from a polyline layer based on user defined start point.

Inputs:

A polyline feature layer

Start Point to be used

Outputs:

New Polyline layer - all polylines have their from node closer to the user specified start

points

Notes :

The corners and the middle points of the smallest bounding rectangle of each polyline are

used

Illustration:

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

FlipPolylinesBasedOnPoint

<input

dataset>

A String representing the input layer. Must be of Polyline type.

<output

dataset>

A String - the full name of the output layer.

>Flip Point

Location>

A String indicating the location of the flip point. See illustration above. Valid

values:

"ll", "lowerleft", "sw", "south-west"

"lr", "lowerright", "se", "south-east"

"ul", "upperleft", "nw", "north-west"

"ur", "upperright", "ne", "north-east"

"b", "bottom", "s", "south"

"t", "top", "n", "north"

"l", "left", "w", "west"

"r", "right", "e", "east"

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "FlipPolylinesBasedOnPoint", "input dataset",

"output dataset", "Flip Point Location"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "FlipPolylinesBasedOnPoint" "input dataset" "output

dataset" "Flip Point Location"

.NET using

ETGWOutX.dll

FlipPolylinesBasedOnPoint(input dataset, output dataset,Flip Point Location)

ArcPy arcpy.FlipPolylinesBasedOnPoint(input dataset, output dataset,Flip Point

Location)

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Clean Contour Gaps

Running programmatically

Cleans the gaps in a polyline dataset representing contours.

Inputs:

A Polyline dataset

A field representing the elevation value of the contours

Tolerance - the gaps smaller than this tolerance will be closed.

Outputs:

New polyline feature class. The gaps in the contours that a smaller then the selected

tolerance are closed.

Notes:

The function is designed specifically for contours, but it can be used on datasets

representing different features.

Always inspect the results before accepting them as valid.

Example :

Input Contours

Resulting Polylines

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

CleanContourGaps

<input

dataset>

A String representing the input layer. Must be of Polyline type.

<output

dataset>

A String - the full name of the output layer.

<Gap Size> A Double representing the maximum gaps to be removed (in the units of the

input dataset).

<Elevation

Field>

A String - the name of the field having the elevation value of the contours.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "CleanContourGaps", "input dataset", "output

dataset", "Gap Size", "Elevation Field"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "CleanContourGaps" "input dataset" "output dataset"

"Gap Size" "Elevation Field"

.NET using

ETGWOutX.dll

CleanContourGaps(input dataset, output dataset, Gap Size, Elevation Field)

ArcPy arcpy.CleanContourGaps(input dataset, output dataset, "Gap Size",

"Elevation Field")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

PolylineZ Characteristics

Running programmatically

Calculates several characteristics of PolylineZs. The results are stored in fields in the attribute table of
the output layer.

Inputs:

A PolylineZ feature layer

Linear precision - the number of digits after the decimal point for linear measures

Angular precision - the number of digits after the decimal point for angular measures

NODATA value - a number that represents undefined Z values. If the Z values of a

geometry are interpolated from a surface and some of the vertices of the geometry are

outside of the extent of the surface, they will not have Z values. Since ArcGIS does not

accept NaN (Not a Number) values in Z enabled shapes, a numeric value is assigned to

these vertices. If the Features To 3D function of ET GeoWizards is used to derive the Z

values, the NODATA value is 999999. When calculating Z characteristics this values need

to be ignored. Segments that have a vertex with NODATA Z value will be ignored in the

calculations.

Outputs:

The results are stored in the attribute table of the output layer. The linear measures are in the units of
the spatial reference of the input dataset. The slope is measured in decimal degrees (from -90 to
+90). The following fields are added to the attribute table

[3D_Length] - the true 3D length of the polyline

[2D_Length] - the 2D length of the polyline

[Max_Z] - Maximum Z value

[Min_Z] - Minimum Z value

[Len_Up] - distance uphill

[Len_Down] - distance downhill

[H_Up] - total increase in height

[H_Down] - total decrease in height

[Av_S_Up] - average slope uphill

[Max_S_Up] - maximum slope uphill

[Av_S_Down] - average slope downhill

[Max_S_Down] -maximum slope downhill

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

PolylineZCharacteristics

<input

dataset>

A String representing the input layer. Must be of Polyline type.

<output

dataset>

A String - the full name of the output layer.

{Linear

Precision}

An Integer indicating the number of digits after the decimal point for linear

measures.

{Angular

Precision}

An Integer indicating the number of digits after the decimal point for angular

measures.

{No Data} A Double - represents undefined Z values."

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "PolylineZCharacteristics", "input dataset",

"output dataset", "Linear Precision", "Angular Precision", "No Data"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "PolylineZCharacteristics" "input dataset" "output

dataset" "Linear Precision" "Angular Precision" "No Data"

.NET using

ETGWOutX.dll

PolylineZCharacteristics(input dataset, output dataset, Linear Precision,

Angular Precision", No Data)

ArcPy arcpy.PolylineZCharacteristics(input dataset, output dataset, "Linear

Precision" , "Angular Precision", "No Data")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Polyline Characteristics

Running programmatically

Calculates some characteristics of the polylines from a polyline dataset

Inputs:

A Polyline layer

Outputs:

A new Polyline dataset

All original attributes are preserved.

New fields added to the attribute table

ET_Sinous - the sinuosity of the polyline calculated as ratio of the length of the

polyline and the length of the line connecting the start and end points of the

polyline. The value ranges from 1 (case of straight line) to infinity (case of a closed

polyline). In case of infinity a 0 is recorded in the attribute table. See illustration

below.

ET_Vert - the number of vertices of the polyline

ET_Dir - the general direction of the polyline - the direction in decimal degrees

measured in North Azimuth of the line connecting the start and end

points of the polyline (see illustration below).

ET_Parts - the number of parts that the polyline has

ET_HasArcs - if the polyline has true arc segments - 1 otherwise - 0

ET_Closed - - if the polyline is closed - 1 otherwise - 0

ET_Fract - the fractal dimension (indication of the complexity) of the polyline. The value

is between 1 and 2. The more complex the polylineis the larger the fractal dimension will

be.

Notes:

Fractal Dimension of the polylines is calculated using the Box Counting method (1)

Calculating the Fractal Dimension is time consuming. If you don't need this characteristic,
uncheck the option for faster processing.

Illustration:

References:

1. Bourke, P., 1993. Fractal Dimension Calculator User Manual, Online. Available:

http://paulbourke.net/fractals/fracdim/

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

PolylineCharacteristics

<input

dataset>

A String representing the input layer. Must be of Polyline type.

<output

dataset>

A String - the full name of the output layer.

{Calculate

Fractal}

A Boolean indicating whether to calculate fractal dimension or not.

{Precision} An Integer between 0 and 8 representing the number of places after the

decimal point to be used.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "PolylineCharacteristics", "input dataset",

"output dataset", "Calculate Fractal", "Precision"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "PolylineCharacteristics" "input dataset" "output

dataset" "Calculate Fractal" "Precision"

.NET using

ETGWOutX.dll

PolylineCharacteristics(input dataset, output dataset, Calculate Fractal,

Precision)

ArcPy arcpy.PolylineCharacteristics(input dataset, output dataset, "Calculate

Fractal", "Precision")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Flip PolylineZ

Running programmatically

Changes the directions of the polylines from a PolylineZ dataset. In the resulting feature class the
polylines will be oriented Up Slope (start from the node with the lower Z value and finis at the node

with higher Z value) or Down Slope (start from the node with the higher Z value and finis at the node
with lower Z value)

Inputs:

A PolylineZ feature layer

Flip Option

Outputs:

A PolylineZ feature class.

A field called ET_Status will be added to the attribute table. The values in this field

will indicate whether a polyline has been flipped ("Flipped") or not ("Original")

Example:

Input Dataset

Flipped - Down Slope option

Flipped - Up Slope option

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

FlipPolylinesZ

<input

dataset>

A String representing the input layer.

<output

dataset>

A String - the full name of the output layer.

>Down

Slope>

A Boolean indicating the direction of the slope. TRUE = Down Slope.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "FlipPolylinesZ", "input dataset", "output

dataset", "Down Slope"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "FlipPolylinesZ" "input dataset" "output dataset" "Down

Slope"

.NET using

ETGWOutX.dll

FlipPolylinesZ(input dataset, output dataset,Down Slope)

ArcPy arcpy.FlipPolylinesZ(input dataset, output dataset,Down Slope)

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Clean Polygons

Running programmatically

Ensures topological correctness of a polygon feature data set.

Inputs:

A polygon feature layer

Fuzzy tolerance

Outputs:

New topologically correct Polygon dataset (no overlaps present)

Redundant data (overlaps and gaps smaller than the fuzzy tolerance) will be

eliminated

The overlaps greater than the fuzzy tolerance are converted into new polygons.

Every new polygon carries the attributes of one of the source overlapping

polygons

The attributes of the input data set are preserved

Optional Point feature class that identifies the overlaps in the input data set. Each point

represents an overlapping polygon in this location. A new field (OriginalID) is added to the

point attribute table where the ID of the original polygon represented by this point is

recorded.

Notes :

The default Fuzzy tolerance is calculated from the extents of the input layer using the

formulae (W + H) / 2000000 where W and H are the with and height of the extent envelope.

Larger values of the Fuzzy tolerance may be used to clean some bigger Gaps and Slivers,

but it might lead to unwanted approximation of the input shapes. The better option is to use

Fuzzy tolerance close to the default and then clean the remaining Gaps and Slivers with the

Clean Gaps function and Eliminate function

If a Fuzzy tolerance of 0 is specified, the function will use the default Fuzzy Tolerance (see

above).

Example:

Input Layer

After Clean

Detail A before Clean

Detail A after Clean

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

CleanPolygons

<input

dataset>

A String representing the input layer. Must be of Polygon type.

<output

dataset>

A String - the full name of the output layer.

<Fuzzy

Tolerance>

A Double representing the Fuzzy Tolerance.

{Overlaps

Name}

A String representing the output point layer indicating the overlaps in the

original polygons.

{Sort Field} A String representing a field to be used to sort the data before processing. The

first features in the input dataset after sorting using that field will have priority

during the cleaning process.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "CleanPolygons", "input dataset", "output

dataset", "Fuzzy Tolerance", "Overlaps Name", "Sort Field"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "CleanPolygons" "input dataset" "output dataset"

"Fuzzy Tolerance" "Overlaps Name" "Sort Field"

.NET using

ETGWOutX.dll

CleanPolygons(input dataset, output dataset, Fuzzy Tolerance,Overlaps

Name, Sort Field)

ArcPy arcpy.CleanPolygons(input dataset, output dataset, "Fuzzy Tolerance",

"Overlaps Name", "Sort Field")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Eliminate

Running programmatically

Eliminates unwanted polygons (slivers) by merging them into the neighboring polygons.

Inputs:

A polygon feature layer

Selection method

Attribute query - introduces a query builder. The user can select the polygons to

be eliminated using any query expression

Thickness ratio is expressed as a ratio of the polygon area versus the area of its

minimal bounding square. The ratio will have value of 1 for a square. The smaller

the value is, the thinner the polygon is. It is a good way of identifying thin polygons

(possible slivers).

Circularity ratio - for a circle the circularity will be 1. The thinner the polygon is the

smaller the circularity will be. This is another way of identifying slivers

Elimination method

Join (Largest area) - will join selected polygons with neighboring polygons that

have the largest area

Join (Longest boundary) - will join selected polygons with neighboring polygons

with the longest common border .

Join to the neighbor with the same value in the selected field as the sliver polygon.

Outputs:

New polygon feature class with selected polygons eliminated.

Notes :

Important! If the input layer has overlapping polygons, there might be some missing

polygons in the output. It is strongly recommended to use the Clean Polygons function

before executing Eliminate.

Some of the very tiny slivers can be eliminated with the Clean Polygon Wizard using

appropriate value for Fuzzy tolerance, however eliminating larger slivers using this method

is not recommended since some unwanted approximation of the polygon shapes might

occur.

When using programatically the only selection method is Attribute Query. You can use the

Polygon Characteristics function to get values for Circularity and Thickness for each polygon

and then execute the Eliminate Function using Attribute Query.

Examples:

Before Eliminate

Eliminated with Largest Area option

Eliminated with Longest boundary option

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

Eliminate

<input

dataset>

A String representing the input layer. Must be of Polygon type.

<output

dataset>

A String - the full name of the output layer.

<Eliminate

Method>

Required. A String - valid values:

"Largest" - The polygons will be eliminated by joining them to the

neighboring polygons that have the largest area

"Longest" - The polygons will be eliminated by joining them to the

neighboring polygons with the longest common border .

"Join Field" - The polygons will be eliminated by joining them to the

neighboring polygons with the same value in the selected field as the

sliver polygons.

<SQL

Expression>

A String representing the selection expression. Example: Shape_Area < 200

AND Name = 'a'

{Join Field} A String representing a field name to be used in the elimination process. Used

only if the elimination method is "Join Field"

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "Eliminate", "input dataset", "output dataset",

"Eliminate Method", "SQL Expression", "Join Field"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "Eliminate" "input dataset" "output dataset" "Eliminate

Method" "SQL Expression" "Join Field"

.NET using

ETGWOutX.dll

Eliminate(input dataset, output dataset, Eliminate Method, SQL Expression",

Join Field)

ArcPy arcpy.Eliminate(input dataset, output dataset, "Eliminate Method" , "SQL

Expression", "Join Field")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Clean Gaps

Running programmatically

Finds the gaps between polygons and holes within polygons and fills them with new polygons.

Inputs:

A polygon feature layer

Outputs:

New polygon layer with all the gaps converted to polygons.

New field is added to the attribute table :

[ET_Gap] - the newly added polygons have value - "Gap"

Notes :

The Eliminate function can be used to join the gaps to the neighboring polygons

Examples:

Before Clean Gaps

After Clean Gaps

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

CleanGaps

<input

dataset>

A String representing the input layer. Must be of Polygon type.

<output

dataset>

A String - the full name of the output layer.

{Clean

Polygons}

A Bollean indicating whether the function to clean the polygons from overlaps.

{Fuzzy

Tolerance}

A Double representing the Fuzzy Tolerance.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "CleanGaps", "input dataset", "output dataset",

"Clean Polygons", "Fuzzy Tolerance"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "CleanGaps" "input dataset" "output dataset" "Clean

Polygons" "Fuzzy Tolerance"

.NET using

ETGWOutX.dll

CleanGaps(input dataset, output dataset, Clean Polygons, Fuzzy Tolerance)

ArcPy arcpy.CleanGaps(input dataset, output dataset, "Clean Polygons", "Fuzzy

Tolerance")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Dissolve Polygons

Running programmatically

Dissolves (aggregates) polygons based on user specified attributes. The resulting polygon

data set does not contain multi-part polygons

Inputs

A polygon feature layer

Fields to be used for dissolving.

Update rules for the rest of the fields to be transferred.

Outputs

An aggregated polygon feature class.Only the polygons with common boundaries that have

the same values for the dissolve fields will be aggregated

Multi-part polygons will be created if specified by the user.

The attributes will be transferred according the user specified rules. For the fields with no

specified update rule, date and blob fields, the aggregated feature will carry the attributes of

the first feature.

Example:

Input Layer Dissolve field = "Dissolve"

After Dissolve

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

DissolvePolygons

<input

dataset>

A String representing the input layer. Must be of Polygon type.

<output

dataset>

A String - the full name of the output layer.

{Dissolve

Fields}

A String representing a list (separated with ";") with the field names to be used

for dissolving.

{Statistic

Fields}

A String representing a list (separated with ";") with the field names for which

statistics will be created. Example: "Field1 Sum;Field2 Max;Field3 Min"

{Create

Multiparts}

A Boolean indicating whether the function will create multipart polygons.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "DissolvePolygons", "input dataset", "output

dataset", "Dissolve Fields", "Statistic Fields", "Create Multiparts"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "DissolvePolygons" "input dataset" "output dataset"

"Dissolve Fields" "Statistic Fields" "Create Multiparts"

.NET using

ETGWOutX.dll

DissolvePolygons(input dataset, output dataset, Dissolve Fields, Statistic

Fields, Create Multiparts)

ArcPy arcpy.DissolvePolygons(input dataset, output dataset, "Dissolve Fields",

"Statistic Fields", "Create Multiparts")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Build Polygons

Running programmatically

Builds polygon layer from a polyline layer

Inputs:

A polyline feature layer

Optional point dataset that represents polygon labels and is to be used for attaching

attributes to the resulting polygons.

Outputs:

New polygon feature class

Notes :

The process goes through several steps

Cleans the polyline theme with user specified Fuzzy tolerance - creates

intersections and removes duplicate polylines. It is highly recommended the

polyline layer to be cleaned beforehand with the Clean Polyline function.

During the second step the process removes all non polygon elements. All the

polylines having a dangling node will be removed. Note that the function will snap

the dangling nodes to the closest polylines only if they are withing the Fuzzy

tolerance, therefore it is very important to use Clean Dangling Nodes function in

order to ensure that there will be no loss of data.

The third step is the actual building of the polygons

Although not required, three data preparation steps are very important as mentioned above

Use Clean Polyline function to clean the input polyline data set.

Use Clean Dangling Nodes function to clean all dangling polylines.

Use Export Nodes function to verify that all the polylines are correctly connected.

Example:

Source Polyline Layer

Result Polygon Layer

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

BuildPolygons

<input

dataset>

A String representing the input layer. Must be of Polyline type.

<output

dataset>

A String - the full name of the output layer.

<Fuzzy

Tolerance>

A Double representing the Fuzzy tolerance (in the units of the input dataset) to

be used to resolve intersections.

{Label

Points}

A point layer to be used as a source for the polygon attributes.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "BuildPolygons", "input dataset", "output

dataset", "Fuzzy Tolerance", "Label Points"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "BuildPolygons" "input dataset" "output dataset" "Fuzzy

Tolerance" "Label Points"

.NET using

ETGWOutX.dll

BuildPolygons(input dataset, output dataset, Fuzzy Tolerance, Label Points)

ArcPy arcpy.BuildPolygons(input dataset, output dataset, "Fuzzy Tolerance", "Label

Points")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,

you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Create Centerlines

Running programmatically

Creates centerlines from polygon features.

Inputs:

A polygon feature class.

Maximum Width.

Minimum Width.

Centerline type

Inside - the centerlines will be created inside the polygons - suitable for deriving

centerlines from rivers and streets represented by polygons

Outside - the centerlines will be created in the gaps between polygons - suitable

for deriving street centerlines from cadastral data.

Outputs:

New polyline layer

Notes:

If the "Inside" option is used, the input polygons should represent linear by nature features

(rivers, roads, etc.)

If the "Outside" option is used, the gaps between the input polygons should represent linear

by nature features (streets, etc.)

The new feature class will not have any attributes.

Maximum and Minimum widths should be specified in the units of the spatial reference of

the input feature class

Use reasonable for your data Maximum and Minimum widths.

The results might contain some unwanted lines. Inspect the results and remove undesired

features.

Use the Smooth Polylines function after inspecting the results.

Examples:

Centerlines Inside Polygons

Input Dataset

Result

Result (Detail

Centerlines Outside Polygons

Input Dataset

Result

Result (Detail)

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

CreateCenterlines

<input

dataset>

A String representing the input layer. Must be of Polygon type.

<output

dataset>

A String - the full name of the output layer.

<location

option>

A String indicating the location of the centerlines to be created. "in" - centerlines

inside the input polygons (rivers, streets, etc.) - "out" - centerlines outside the

input polygons (cadastre, etc.)

<Max Width> A Double representing the maximum width of the polygons (in the units of the

spatial reference of the input dataset.

<Min Width< A Double representing the minimum width of the polygons (in the units of the

spatial reference of the input dataset.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "CreateCenterlines", "input dataset", "output

dataset", "location option" "Max Width", "Min Width"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "CreateCenterlines" "input dataset" "output dataset"

"location option" "Max Width" "Min Width"

.NET using

ETGWOutX.dll

CreateCenterlines(input dataset, output dataset, location option, Max Width,

Min Width)

ArcPy arcpy.CreateCenterlines(input dataset, output dataset, location option, "Max

Width", "Min Width")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Polygon Global Snap

Running programmatically

Snaps the features of a polygon layer to another layer (Point, Polyline or Polygon)

Inputs

A polygon layer to be snapped

A snap layer - point, multipoint polyline or polygon

Snap tolerance

Snap options 1 (Snap What)

Snap options 2 (Snap To What)

Outputs

A polygon feature class - the vertices from the source layer will be moved to snap to the

features of the Snap Layer (if within the snap tolerance)

Options:

Snap Options 1 (Snap What) - this options lets the user set which elements of the source

polygonsto be used for snapping

Vertices: All the vertices of the source polylines will be used.

Insert Vertices: This option will get the vertices from the features of the snap layer

and will insert new vertices into the source polylines. The new vertices together

with the original ones will be used for snapping. This option is slower than the

other ones, but gives the best snapping results especially if the polygons to be

snapped have much less vertices than the ones from the Snap layer.

Snap Options 2 (Snap To What)

Vertices: The polygons will be snapped to the nearest vertex of the nearest feature

from the Snap layer

Nearest edge: The polygons will be snapped to the nearest point of the nearest

feature from the Snap layer

Vertices and Edges: If there is a vertex closer than the snap tolerance to the

polygons (their elements defined in Options 1) to be snapped, the polygon will

snap to it, otherwise it will snap to the nearest edge.

Notes:

The polygons will be cleaned from overlaps. It is recommended that the Clean Polygons

function to be used before the Snap Polygons to ensure a better control over the cleaning

process.

The snap distance should be in the units of the spatial reference of the input dataset.

The Source and the Reference Datasets can have different spatial references as long as

they have the same Geographic Coordinate systems.

Example:

Before Snap

After Snap - Option: Vertices

After Snap - Option: Nearest Edge

After Snap - Option: Vertices and Edges

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

SnapPolygons

<input

dataset>

A String representing the input layer. Must be of Polygon type.

<Reference

Dataset>

A String representing the layer to be used to snap to.

<output

dataset>

A String - the full name of the output layer.

<Snap

Tolerance>

A Double representing the Snap Tolerance (in the units of the spatial reference

of the input dataset.

<Snap

What>

Required. A String indicating what parts of the input polygons will be snapped.

Possible values:

Vertex - the vertices of the source polygons will be snapped.

InsertVertex - the vertices from the features of the Reference Dataset

will be inserted (if closer to the input dataaset) as new vertices into the

source polygon boundaries. The new vertices together with the

original ones will be used for snapping. This option is slower than the

other ones, but gives the best snapping results especially if the

polygons to be snapped have much less vertices than the ones from

the Reference Dataset.

<Snap To

What>

Required. A String indicating to what parts of the reference geometries the

input polygons will try to snap. Possible values:

Vertex - the input polygons will be snapped only to the vertices of the

geometries from the reference dataset.

All - the input polygons will be snapped to the vertices or nearest edge

of the geometries from the reference dataset.

{Snap To Z} Optional. A Boolean indicating whether the input geometries will snap the the Z

values of the geometries from the Reference Dataset. Only if both dataset have

Z values.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "SnapPolygons", "input dataset", "Reference

Dataset", "output dataset", "Snap Tolerance", "Snap What", "Snap To What",

"Snap To Z"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "SnapPolygons" "input dataset" "Reference Dataset"

"output dataset" "Snap Tolerance" "Snap What" "Snap To What" "Snap To Z"

.NET using

ETGWOutX.dll

SnapPolygons(input dataset, Reference Dataset, output dataset, Snap

Tolerance, Snap What, Snap To What, Snap To Z)

ArcPy arcpy.SnapPolygons(input dataset, Reference Dataset, "output dataset" ,

"Snap Tolerance", "Snap What", "Snap To What", "Snap To Z")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Get Adjacent Polygons

Running programmatically

Determines for each polygon of the dataset the adjacent polygons and stores the result in the
attribute table as a comma delimited string.

Inputs:

A polygon feature layer.

Link Field - the field which values will be used to save in the adjacency string

Outputs:

New polygon feature class. Two fields will be added to the attribute table

[ET_Adj] - the field that will contain the adjacency string.

[ET_Count] - the count of the adjacent polygons for each polygon

Notes:

If the input polygon layer has overlaps it is strongly recommended to use the Clean

Polygons function beforhand

A polygon is considered adjacent to another polygon only if the two polygons have a

common boundary. Two polygons that share only a common point are not considered

adjacent

Example:

State Name ET Adj ET Count

Arizona California, Sonora, Nevada, NewMexico, BajaCalifornia, Utah 6

Colorado NewMexico, Utah, Wyoming, Kansas,Nebraska, Oklahoma 6

New Mexico Chihuahua, Sonora, Arizona, Colorado, Oklahoma, Texas 6

Utah Nevada, Arizona, Colorado, Wyoming, Idaho 5

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

PolygonAdjacency

<input

dataset>

A String representing the input layer. Must be of Polygon type.

<output

dataset>

A String - the full name of the output layer.

{Link Field} A Double representing the Generalization tolerance (in the units of the spatial

reference of the input layer.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "PolygonAdjacency", "input dataset", "output

dataset", "Link Field"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "PolygonAdjacency" "input dataset" "output dataset"

"Link Field"

.NET using

ETGWOutX.dll

PolygonAdjacency(input dataset, output dataset, Link Field)

ArcPy arcpy.PolygonAdjacency(input dataset, output dataset, "Link Field")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Partition Polygons with Polylines

Running programmatically

Partitions (splits) a polygon dataset with the polylines of a polyline dataset.

Inputs:

A polygon feature class

A polyline feature class to be used for splitting

Outputs:

New polygon feature class. The attributes of the input data set are preserved.

Notes:

Both datasets should have the spatial reference with the same Geographic Coordinate

System.

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

PartitionPolygonsWithPolylines

<input

dataset>

A String representing the input layer. Must be of Polygon type.

<Split

Dataset>

A String representing the layer to be merged. Must be of Polyline type.

<output

dataset>

A String - the full name of the output layer.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "PartitionPolygonsWithPolylines", "input

dataset", "Split Dataset", "output dataset"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "PartitionPolygonsWithPolylines" "input dataset" "Split

Dataset" "output dataset"

.NET using

ETGWOutX.dll

PartitionPolygonsWithPolylines(input dataset, Split Dataset, output dataset)

ArcPy arcpy.PartitionPolygonsWithPolylines(input dataset, Split Dataset, "output

dataset")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Aggregate Polygons

Running programmatically

Combines the polygons from the input layer that are within the user specified distance into new
polygons. Can be used also to generalize buildings.

Inputs:

A polygon layer

Aggregation distance. The polygons that are closer to each other than this distance will be

combined

Minimum area of the holes to be preserved - all holes with area less than this tolerance will

be removed.

Outputs:

New polygon layer

Notes:

The new layer will not have any attributes. The Transfer Attributes function can be used to

get summarized attributes from the original polygons.

The Aggregation distance and the Minimum area of holes should be specified in the units of

the spatial reference of the input layer

If no Minimum area of holes is specified only the holes with area smaller than 2 x

Aggregation distance x Aggregation distance will be removed

Examples:

General polygons

Input Dataset

Result (No Minimum area of holes specified)

Result (Minimum area of holes specified)

Buildings

Input Dataset

Aggregate distance = 1 meter

Aggregate distance = 5 meters

Aggregate distance = 10 m

Aggregate distance = 20 m

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

AggregatePolygons

<input

dataset>

A String representing the input layer. Must be of Polygon type.

<output

dataset>

A String - the full name of the output layer.

<Aggregation

Distance>

A Double representing the aggregation distance. The polygons that are closer

to each other than this distance will be combined.

{Area

Tolerance}

A Double representing the minimum area of holes to be preserved. All holes

with area less than this tolerance will be removed.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "AggregatePolygons", "input dataset", "output

dataset", "Aggregation Distance", "Area Tolerance"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "AggregatePolygons" "input dataset" "output dataset"

"Aggregation Distance" "Area Tolerance"

.NET using

ETGWOutX.dll

AggregatePolygons(input dataset, output dataset, Aggregation Distance, Area

Tolerance)

ArcPy arcpy.AggregatePolygons(input dataset, output dataset, "Aggregation

Distance", "Area Tolerance")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Polygon To Polyline Advanced

Running programmatically

Converts the polygon boundaries to polylines.

Creates a topologically correct (nodes at intersections, no overlaps) Polyline dataset

For each polyline the left and right polygon attributes are added.

Optionally the labels of the polygons are exported as points. The point attribute table

contains all original attributes.

Inputs:

A polygon feature layer

Link Field - the values of this field will be saved as Left and Right polygons for each polyline

Fuzzy tolerance - will be used to clean the polygon boundaries

Outputs:

New topologically correct Polyline layer. Fields added to the polyline attribute table

[ET_Left] - stores the Left polygon link values

[ET_Right] - stores the Right polygon link values

Optional Point layer representing the labels of the input polygons. The attributes of the input

polygons are preserved in the Point Attribute Table

Optional Polygon layer - the input layer clean from overlaps.

Notes :

The default Fuzzy tolerance is calculated from the extents of the input layer using the

formulae (W + H) / 2000000 where W and H are the with and height of the extent envelope.

Larger values of the Fuzzy tolerance may be used to clean some bigger Gaps and Slivers,

but it might lead to unwanted approximation of the input shapes.

A Fuzzy tolerance = 0 will be replaced by the default value

If a polyline does not have Left polygon, the value of the ET_Left field will be set to empty

string. In topologically correct polygon dataset this should indicate the outer boundary

(neighboring with the so-called Universal Polygon. Empty values in the interior of the

polygon dataset will indicate gaps or overlaps in the data.

If the input polygon layer has overlaps it is strongly recommended to use the Clean Polygons

function beforhand

Input Polygons with overlaps

Result if the function is performed on the overlapping polygons

Result if the overlaps are cleaned beforehand

Example:

Original polygons

Derived polylines.

Nodes in intersections

No duplicates

The polylines on the boundary of the area will have empty ET_Left

Polylines labeled with their Left and Right polygons. Polygons labeled with the Link field used in the

function.

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

PolygonsToPolylinesAdvanced

<input

dataset>

A String representing the input layer. Must be of Polygon type.

<output

dataset>

A String - the full name of the output layer.

<Fuzzy

Tolerance>

A Double representing the Fuzzy Tolerance.

{Labels

Dataset}

A String - the full name of the output label points layer.

{Link Field} A String - the name of the field in the input dataset to be used as a link.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call ([ETGWPath, "PolygonsToPolylinesAdvanced", "input

dataset", "output dataset", "Fuzzy Tolerance", "Labels Dataset" "Link Field"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "PolygonsToPolylinesAdvanced" "input dataset"

"output dataset" "Fuzzy Tolerance" "Labels Dataset" "Link Field"

.NET using

ETGWOutX.dll

PolygonsToPolylinesAdvanced (input dataset, output dataset, Fuzzy

Tolerance, Labels Dataset,Link Field)

ArcPy arcpy. PolygonsToPolylinesAdvanced (input dataset, output dataset, "Fuzzy

Tolerance", "Labels Dataset", "Link Field")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,

you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Generalize Polygons

Running programmatically

Generalizes (reduces the number of vertices required to represent a polygon) the features of a
polygon layer using the Douglas-Poiker algorithm. Preserves the polygon topology. If the input

polygon dataset has only stand alone polygons (no common boundaries), the Stand Alone option can
be used for faster processing.

Inputs:

A polygon feature class

Generalization Tolerance (maximum offset) - the maximum distance that the generalized

polyline will differ from the original one

Option to treat the input as Stand Alone Polygons. Note that if this option is set to TRUE

and there are polygons that share common boundaries, the topology might be destroyed.

Outputs:

New polygon feature class

The output feature class will contain all the features of the original data set

The attributes of the input data set are preserved.

Notes:

Make sure that the input polygon dataset does not have any overlaps!

The Generalization tolerance should be specified in the units of the spatial reference of the

input feature class

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

GeneralizePolygons

<input

dataset>

A String representing the input layer. Must be of Polygon type.

<output

dataset>

A String - the full name of the output layer.

<Generalize

Tolerance>

A Double representing the Generalization tolerance (in the units of the spatial

reference of the input layer.

{Stand Alone

Only}

A Boolean indicating whether the input contains only stand alone polygons.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "GeneralizePolygons", "input dataset", "output

dataset", "Generalize Tolerance", "Stand Alone Only"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "GeneralizePolygons" "input dataset" "output dataset"

"Generalize Tolerance" "Stand Alone Only"

.NET using

ETGWOutX.dll

GeneralizePolygons(input dataset, output dataset, Generalize Tolerance,

Stand Alone Only)

ArcPy arcpy.GeneralizePolygons(input dataset, output dataset, "Generalize

Tolerance", "Stand Alone Only")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Densify Polygons

Running programmatically

Densifies (adds vertices to polygons boundaries at a user-specified tolerance) the features of a
polygon layer. Preserves the polygon topology. If the input polygon dataset has only stand alone

polygons (no common boundaries), the Stand Alone option can be used for faster processing.

Inputs:

A polygon feature class

Maximum segment length

Option to treat the input as Stand Alone Polygons. Note that if this option is set to TRUE

and there are polygons that share common boundaries, the topology might be destroyed.

Outputs:

New polygon feature class

The output feature class will contain all the features of the original data set

The attributes of the input data set are preserved.

Notes:

Make sure that the input polygon dataset does not have any overlaps!

The Densify tolerance should be specified in the units of the spatial reference of the input

feature class

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

DensifyPolygons

<input

dataset>

A String representing the input layer. Must be of Polygon type.

<output

dataset>

A String - the full name of the output layer.

<Densify

Tolerance>

A Double representing the Generalization tolerance (in the units of the spatial

reference of the input layer.

{Stand Alone

Only}

A Boolean indicating whether the input contains only stand alone polygons.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "DensifyPolygons", "input dataset", "output

dataset", "Densify Tolerance", "Stand Alone Only"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "DensifyPolygons" "input dataset" "output dataset"

"Densify Tolerance" "Stand Alone Only"

.NET using

ETGWOutX.dll

DensifyPolygons(input dataset, output dataset, Densify Tolerance, Stand

Alone Only)

ArcPy arcpy.DensifyPolygons(input dataset, output dataset, "Densify Tolerance",

"Stand Alone Only")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Smooth Polygons

Running programmatically

Smooth the features of a polygon layer using three different smoothing algorithms. The polygons are
cleaned from overlaps before proceeding with smoothing.

Inputs:

A polygon feature layer

Smooth method

Bezier curve

The curve in general does not pass through any of the control points

(vertices of original polygon) except the first and last.

The curve is always contained within the convex hull of the control points

Approximate the original shape rather freely

Fast - good for polygons with many vertices (control points) that will

constrain the curve close to the original shape

B - Spline

The curve does not pass through any of the control points (vertices of

original polygon) except the first and last

Follows better than the Bezier curve the original shape

Depending on the "Freedom" parameter the smoothing occurs only in the

areas close to a vertex

B-Splines lie in the convex hull of the original polygon

Slower than the Bezier curve, but the results in many cases are much

better

T - Spline (Tension Spline)

The curve passes trough all the vertices of the original polygon

The degree of fit can be controlled with the "Tension" parameter

Suitable for smoothing curves with comparatively equally spaced

vertices

Fast with good approximation of the original polygon

Parameters depending on the method

The "Smoothness" parameter (Used in all methods) defines the number of points

in the output curve. The allowed values (2 to 20) in fact are point multiplier. The

number of vertices of the original polygon multiplied by this value will give the

number of vertices of the smoothed polygon. The larger the value of the

Smoothness parameter, the slower the process will be. In most of the cases a

value of 5 (default) will create smooth and representative polygon

The "Freedom" parameter (B-Spline only) defines how close to the original

polygon the curve will be. The allowed values are from 3 to 10. Smaller values

give better approximation. With large values the curve will become very similar to

Bezier curve

The "Tension" parameter (T-Spline only) defines how close to the original polygon

the curve will be. Increasing the tension is similar to pulling on the ends of a string

constrained to pass through the polygon vertices. allowed values are from 1 to

100.

Optional - Densification tolerance. In some cases the smooth parameters cannot restrict the

smoothing enough. The user can restrict the effect of the smoothing by introducing new

vertices in the shapes. See Densify function for details

Optional - Generalization tolerance. The smoothing introduces in the shapes many new

vertices. The user can decrease the number of vertices by using this option. See Generalize

function for details.

Outputs:

New polygon layer

The output layer will contain all the features of the original data set

The attributes of the input data set are preserved.

Notes :

It is highly recommended to use the Clean Polygons function before smoothing the

polygons.

All the methods implement generic algorithms.

The Generalization and Densification tolerances should be specified in the units of the

spatial reference of the input layer

Examples:

B-Spline - default values for smoothness and freedom

B-Spline - default values for smoothness and freedom. Densified before smoothing

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function Name SmoothPolygonsBezier

Function Name SmoothPolygonsBSpline

Function Name SmoothPolygonsTSpline

<input

dataset>

A String representing the input layer. Must be of polygon type.

<output

dataset>

A String - the full name of the output layer.

<Smoothness> An Integer that defines the number of points in the output curve. The allowed

values (2 to 20) in fact are point multiplier. The number of vertices of the

original polygon multiplied by this value will give the number of vertices of the

smoothed polygon. The larger the value of the parameter, the slower the

process will be.

<Freedom> Only for B-Spline. An Integer that defines how close to the original polygon

the curve will be. The allowed values are from 3 to 10. Smaller values give

better approximation. With large values the curve will become very similar to

Bezier curve

<Tension> Only for T-Spline. An Integer that defines how close to the original polygon

the curve will be. Increasing the tension is similar to pulling on the ends of a

string constrained to pass through the polygon vertices. allowed values are

from 1 to 100.

{Densify

Before}

A Double representing the Densification tolerance. In some cases the smooth

parameters cannot restrict the smoothing enough. The user can restrict the

effect of the smoothing by introducing new vertices in the shapes. See

Densify function for details

{Generalize

After}

A Double representing the Generalization tolerance. The smoothing

introduces in the shapes many new vertices. The user can decrease the

number of vertices by using this option. See Generalize function for details.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

SmoothPolygonsBezier

Language Syntax

Python subprocess.call([ETGWPath, "SmoothPolygonsBezier", "input dataset",

"output dataset", "Smoothness", "Densify Before", "Generalize After"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "SmoothPolygonsBezier" "input dataset" "output

dataset" "Smoothness" "Densify Before" "Generalize After"

.NET using

ETGWOutX.dll

SmoothPolygonsBezier(input dataset, output dataset, Smoothness, Densify

Before, Generalize After)

ArcPy arcpy.SmoothPolygonsBezier(input dataset, output dataset, "Smoothness" ,

"Densify Before", "Generalize After")

SmoothPolygonsBSpline

Language Syntax

Python subprocess.call([ETGWPath, "SmoothPolygonsBSpline", "input dataset",

"output dataset", "Smoothness", "Freedom", "Densify Before", "Generalize

After"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "SmoothPolygonsBSpline" "input dataset" "output

dataset" "Smoothness" "Freedom" "Densify Before" "Generalize After"

.NET using

ETGWOutX.dll

SmoothPolygonsBSpline(input dataset, output dataset, Smoothness,

Freedom, Densify Before, Generalize After)

ArcPy arcpy.SmoothPolygonsBSpline(input dataset, output dataset, "Smoothness" ,

"Freedom", "Densify Before", "Generalize After")

SmoothPolygonsTSpline

Language Syntax

Python subprocess.call([ETGWPath, "SmoothPolygonsTSpline", "input dataset",

"output dataset", "Smoothness", "Tension", "Densify Before", "Generalize

After"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "SmoothPolygonsTSpline" "input dataset" "output

dataset" "Smoothness" "Tension" "Densify Before" "Generalize After"

.NET using

ETGWOutX.dll

SmoothPolygonsTSpline(input dataset, output dataset, Smoothness, Tension,

Densify Before, Generalize After)

ArcPy arcpy.SmoothPolygonsTSpline(input dataset, output dataset, "Smoothness" ,

"Tension", "Densify Before", "Generalize After")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Polygon Characteristics

Running programmatically

Calculates some characteristics of the polygons from a polygon dataset

Inputs:

A Polygon feature class

Outputs:

A new Polygon dataset

All original attributes are preserved.

New fields added to the attribute table

ET_Length - the length of the longest axis in the units of the Spatial Reference of

the input feature class.

ET Width - the length of shortest side of the bounding rectangle aligned with the

longest axis in the units of the Spatial Reference of the input feature class.

ET Circ - Circularity ratio - for a circle the circularity will be 1. The thinner the

polygon is the smaller the circularity will be.

ET Thick - Thickness ratio expressed as a ratio of the polygon area versus the

area of its minimum bounding square. The ratio will have value of 1 for a square.

The smaller the value is, the thinner the polygon is.

ET_Parts - the number of parts that the polygon has

ET_Holes - the number of holes in the polygon

ET_HasArcs - if the polygon has true arc segments - 1 otherwise - 0

ET_Vert - the number of vertices of the polygon

ET_Depth - the distance from the deepest point (the center of the maximum

inscribed circle) to the polygon boundary. See Polygon To Maximum Inscribed

Circle function

ET_Fract - the fractal dimension (indication of the complexity) of the polygon

boundary. The value is between 1 and 2. The more complex the polygon boundary

is the larger the fractal dimension will be.

Notes:

Fractal Dimension of the polygon boundaries is calculated using the Box Counting method

(1)

Calculating the Fractal Dimension and Polygon Depth is time consuming. If you don't need

these characteristics, uncheck the options for faster processing.

Illustrations:

References:

1. Bourke, P., 1993. Fractal Dimension Calculator User Manual, Online. Available:

http://paulbourke.net/fractals/fracdim/

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

PolygonCharacteristics

<input

dataset>

A String representing the input layer. Must be of Polygon type.

<output

dataset>

A String - the full name of the output layer.

{Calculate

Depth}

A Boolean indicating whether to calculate polygon depth or not.

{Calculate

Fractal}

A Boolean indicating whether to calculate fractal dimension or not.

{Precision} An Integer between 0 and 8 representing the number of places after the

decimal point to be used.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "PolygonCharacteristics", "input dataset",

"output dataset", "Calculate Depth", "Calculate Fractal", "Precision"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "PolygonCharacteristics" "input dataset" "output

dataset" "Calculate Depth" "Calculate Fractal" "Precision"

.NET using

ETGWOutX.dll

PolygonCharacteristics(input dataset, output dataset, Calculate Depth,

Calculate Fractal, Precision)

ArcPy arcpy.PolygonCharacteristics(input dataset, output dataset, "Calculate

Depth", "Calculate Fractal", "Precision")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Fill Polygon Holes

Running programmatically

Fills the holes in a polygon dataset.

Inputs:

A polygon feature layer

Maximum area of the holes to be removed

Outputs:

New polygon dataset. The holes with area smaller than the user tolerance will be removed

Notes :

If there are island polygons present, the function will create overlaps. Use the Clean

Polygons function to restore the topology.

Example:

Input Dataset

After Fill Polygon Holes

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

FillPolygonHoles

<input

dataset>

A String representing the input layer. Must be of Polygon type.

<output

dataset>

A String - the full name of the output layer.

{Max Area} A Double. Holes with larger area than this tolerance will not be removed.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "FillPolygonHoles", "input dataset", "output

dataset", "Max Area"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "FillPolygonHoles" "input dataset" "output dataset"

"Max Area"

.NET using

ETGWOutX.dll

FillPolygonHoles(input dataset, output dataset,Max Area)

ArcPy arcpy.FillPolygonHoles(input dataset, output dataset,Max Area)

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Polygon To Polyline

Running programmatically

Converts a polygon data set to a polyline feature class

Inputs:

A polygon feature layer

Outputs:

New polyline layer

Notes :

Each ring of a polygon will be represented by a single polyline. The common boundaries

between the polygons will be represented by duplicate polylines. The Clean Polylines

Wizard can be used to create intersections and remove duplicate lines.

The attributes of the original polygons are transferred to the resulting polylines.

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

PolygonsToPolylines

<input

dataset>

A String representing the input layer. Must be of Polygon type.

<output

dataset>

A String - the full name of the output layer.

{Keep Z} A Boolean indicating whether if the input has Z values to keep them in the

output.

{Keep M} A Boolean indicating whether if the input has M values to keep them in the

output.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "PolygonsToPolylines", "input dataset", "output

dataset", "Keep Z", "Keep M"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "PolygonsToPolylines" "input dataset" "output dataset"

"Keep Z" "Keep M"

.NET using

ETGWOutX.dll

PolygonsToPolylines(input dataset, output dataset, Keep Z, Keep M)

ArcPy arcpy.PolygonsToPolylines(input dataset, output dataset, "Keep Z", "Keep

M")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Polygons To Points

Running programmatically

Converts a polygon dataset to a point dataset

Inputs:

A polygon feature layer

Conversion option

Vertices - the vertices of all polygons will be converted to points.

Labels - the Label point is always located inside the polygon. The algorithm makes

sure that the point is not close to the boundary of the polygon. Points created

using this algorithm are suitable for spatial transfer of attributes (See Smooth

Polygons and Generalize Polygons functions).

Centers - the Center points represent the centroid of a polygon. Therefore

sometimes they might be located outside of the polygon

Centers Inside - points representing the centroids of the polygons. If the centroid

occurs outside of the polygon, the point is moved to be in the polygon.

More options

Remove Duplicate Points - the duplicate points created from the vertices of two

adjacent polygons will be represented by one point. Note that if this option is used

the attempt to convert back these points to polygons will produce incorrect result

Calculate point Position along boundaries

If used the [ET_Order] field will be populated with the relative location of

the vertex (0 to 1) from the start of the polygon boundary.

If not used, the [ET_Order] field will be populated with the order of the

vertex in the polygon ring (from 0 to number of vertices)

Preserve Z(M) available only if the input feature class is of PolygonZ(M) type. If

selected, the result will be of PointZ(M) type, otherwise the result will be of plain

points (no Z or M values)

Outputs:

New point layer

All the original attributes of the polygons are transferred to the point attribute table

New fields are added to the point attribute table

[ET_Order] - the position of the point along the polygon's boundary. The

value can be from 0 to 1 (if the Calculate point Position option is used) or

from 0 to number of vertices (if not). The value of this attribute can be

used if the polygons have to be recreated from these points. - only if

"Vertices" conversion option is used

[ET_IDP] - the FID of original polygons. The values can be used to link the points

back to the polygons.

[ET_IDR] - this is a unique number identifying each ring of the polygons. If a polygon

with FID = 356 has 3 rings, the corresponding points will have values in this fields

356_0, 356_1 and 356_2. This field can be used to recreate the polygons from the

points without loosing the rings. - only if "Vertices" conversion option is used

[ET_X] - the X coordinates of the resulting points

[ET_Y] - the Y coordinates of the resulting points

[ET_Z] - if the input feature class is of PolygonZ(M) type.

[ET_M] - if the input feature class is of PolygonZ(M) type.

Notes :

See above for the use of the "Remove duplicate points" option

Examples:

Input Dataset

Result Vertices option

Result Labels option

Result Center option

Result Center in option

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

PolygonsToPoints

<input

dataset>

A String representing the input layer. Must be of Polygon type.

<output

dataset>

A String - the full name of the output layer.

<Option> A String - the convertion option. Valid values.

"Vertex"

"Center"

"Label"

"CenterIn"

{Remove

Duplicates}

A Boolean indicating whether the duplicate points are to be removed from the

output. Used only for "Vertex" option.

{Calculate

Position}

A Boolean indicating whether the position of the points along the polygon

boundary to be calculated. Used only for "Vertex" option.

{Keep Z} A Boolean indicating whether if the input has Z values to keep them in the

output.

{Keep M} A Boolean indicating whether if the input has M values to keep them in the

output.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "PolygonsToPoints", "input dataset", "output

dataset", "Option", "Remove Duplicates", "Calculate Position", "Keep Z",

"Keep M"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "PolygonsToPoints" "input dataset" "output dataset"

"Option" "Remove Duplicates" "Calculate Position" "Keep Z" "Keep M"

.NET using

ETGWOutX.dll

PolygonsToPoints(input dataset, output dataset, Option, Remove Duplicates,

Calculate Position, Keep Z, Keep M)

ArcPy arcpy.PolygonsToPoints(input dataset, output dataset,"Option", "Remove

Duplicates", "Calculate Position", "Keep Z", "Keep M")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Polylines To Points

Running programmatically

Converts a polyline data set to a point dataset

Inputs:

A polyline feature layer

Conversion option

Vertices - the vertices of all polylines will be converted to points. If the "Remove

duplicate points" option is selected the duplicate points created from the nodes of

two polylines sharing a common node will be represented by one point. Note that if

this option is used the attempt to convert back these points to polylines will

produce incorrect result.

Nodes - only the nodes of each polyline will be exported.

Middle points - only the middle point of each polyline will be exported.

More options

Remove Duplicate Points - the duplicate points created from the vertices of two

adjacent polygons will be represented by one point. Note that if this option is used

the attempt to convert back these points to polygons will produce incorrect result

Calculate point Position along boundaries

If used the [ET_Order] field will be populated with the relative location of

the vertex (0 to 1) from the start of the polylines.

If not used, the [ET_Order] field will be populated with the order of the

vertex in the polyline (from 0 to number of vertices)

Preserve Z(M) available only if the input feature class is of PolygonZ(M) type. If

selected, the result will be of PointZ(M) type, otherwise the result will be of plain

points (no Z or M values)

Outputs:

New point feature class

All the original attributes of the polylines are transferred to the point attribute table

New fields are added to the point attribute table

[ET_ID] - the FID of original polylines. The values can be used to link the

points back to the polylines.

[ET_IDP] - this is a unique number identifying each part of the polylines.

If a polyline with FID = 356 has 3 parts, the corresponding points will

have values in this fields 356_0, 356_1 and 356_2.

[ET_X] - the X coordinates of the resulting points

[ET_Y] - the Y coordinates of the resulting points

If the conversion option is "Vertices" or "Nodes" an Order field is added

[ET_Order] - the position of the point along the polyline . The value can

be from 0 to 1 (if the Calculate point Position option is used) or from 0 to

number of vertices (if not). The value of this attribute can be used if the

polyline have to be recreated from these points.

If the "Assign angle attribute" option is used an angle field is added

[ET_Angle] - the angle of the polyline in this point.

Notes :

See above for the use of the "Remove duplicate points" option

If the "Assign angle attribute" option is used, the points symbols can be rotated and in such

a way can represent the direction of the polylines. See the example below

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

PolylinesToPoints

<input

dataset>

A String representing the input layer. Must be of Polyline type.

<output

dataset>

A String - the full name of the output layer.

<Option> A String - the convertion option. Valid values.

"Vertex"

"Node"

"Middle"

{Calculate

Angle}

A Boolean indicating whether the angle of the polyline at the points location to

be calculated and stored in the attribute table. Used only for "Vertex" option.

{Remove

Duplicates}

A Boolean indicating whether the duplicate points are to be removed from the

output. Used only for "Vertex" option.

{Calculate

Position}

A Boolean indicating whether the position of the points along the polygon

boundary to be calculated. Used only for "Vertex" option.

{Keep Z} A Boolean indicating whether if the input has Z values to keep them in the

output.

{Keep M} A Boolean indicating whether if the input has M values to keep them in the

output.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program

Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "PolylinesToPoints", "input dataset", "output

dataset", "Option", "Calculate Angle", "Remove Duplicates", "Calculate

Position", "Keep Z", "Keep M"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "PolylinesToPoints" "input dataset" "output dataset"

"Option" "Calculate Angle" "Remove Duplicates" "Calculate Position" "Keep

Z" "Keep M"

.NET using

ETGWOutX.dll

PolylinesToPoints(input dataset, output dataset, Option,Calculate Angle,

Remove Duplicates, Calculate Position, Keep Z, Keep M)

ArcPy arcpy.PolylinesToPoints(input dataset, output dataset,"Option", "Calculate

Angle", "Remove Duplicates", "Calculate Position", "Keep Z", "Keep M")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,

you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Polylines To Polygons

Running programmatically

Converts closed polylines (and polyline chains) to polygons

Inputs:

A polyline feature layer

Outputs:

New polygon layer

Notes :

All closed polylines will be converted to polygons.

The attributes of the polylines will be transferred to the corresponding polygon features.

If the "Use closed polyline chains" option is used, the polylines that form closed chains will

be used to create polygons. The attributes of the first polyline of the chain will be transferred

to the polygon feature

For advanced polygon creation use the Build Polygon function

Example:

Source Polyline Layer

Result Polygon Layer

Result Polygon Layer(closed polyline chains used)

Result Polygon Layer (Build Polygons Function)

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

PolylinesToPolygons

<input

dataset>

A String representing the input layer. Must be of Polyline type.

<output

dataset>

A String - the full name of the output layer.

{Force

Closure}

A Boolean indicating whether polylines that are not closed and the distance

between the from and to nodes is smaller than the tolerance specified to be

closed.

{Close

Tolerance}

A Double representing the distance to be used for closing the non closed

polylines.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program

Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "PolylinesToPolygons", "input dataset", "output

dataset", "Force Closure", "Close Tolerance"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "PolylinesToPolygons" "input dataset" "output dataset"

"Force Closure" "Close Tolerance"

.NET using

ETGWOutX.dll

PolylinesToPolygons(input dataset, output dataset, Force Closure, Close

Tolerance)

ArcPy arcpy.PolylinesToPolygons(input dataset, output dataset, "Force Closure",

"Close Tolerance")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Polylines To Multipoints

Running programmatically

Converts a polyline data set to a Multipoint dataset

Inputs:

A polyline feature layer

Outputs:

New Multipoint feature class

Notes :

The attributes of the original polylines are transferred to the resulting multipoints.

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

PolylinesToMultipoints

<input

dataset>

A String representing the input layer. Must be of Polyline type.

<output

dataset>

A String - the full name of the output layer.

{Keep Z} A Boolean indicating whether if the input has Z values to keep them in the

output.

{Keep M} A Boolean indicating whether if the input has M values to keep them in the

output.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "PolylinesToMultipoints", "input dataset", "output

dataset", "Keep Z", "Keep M"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "PolylinesToMultipoints" "input dataset" "output

dataset" "Keep Z" "Keep M"

.NET using

ETGWOutX.dll

PolylinesToMultipoints(input dataset, output dataset, Keep Z, Keep M)

ArcPy arcpy.PolylinesToMultipoints(input dataset, output dataset, "Keep Z", "Keep

M")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Points To Polylines

Running programmatically

Converts a point data set to a polyline layer. Attaches to the polyline attribute table the values of the
attributes for the first and last point that form a single polyline. If your point data does not have

Polyline ID and Order attributes, you can try the Connect Unstructured Points function.

Inputs:

A point feature layer

REQUIRED: an ID field which value defines the points to be used for creation of

each polyline

OPTIONAL: an Order field that defines in what sequence the points describe the

polyline. If no Order field is used the order is defined by the record number of the

points

OPTIONAL: a Link field. The values for the first and last point that will form a

single polyline will be added to the polyline attribute table.

OPTIONAL: Z Value field. If specified, a PolylineZ feature class will be created.

The values in this field will be set as Z values for the vertices. If the input points

have Z values, the user can specify the Z values of the input points to ve used by

selecting "Features" for Z Value field.

OPTIONAL: M Value field. If specified, a PolylineM feature class will be created.

The values in this field will be set as M values for the vertices. If the input points

have M values, the user can specify the M values of the input points to ve used by

selecting "Features" for M Value field.

Outputs:

New polyline layer

Fields to be added to the polyline attribute table

[ET_ID] - the field used as Polyline ID

[ET_FromAtt] - the values of the start point of the polyline in the Link field (if link

field is used)

[ET_ToAtt] - the values of the end point of the polyline in the Link field (if link field

is used)

Notes:

There should be at least two points with the same value in the ID field in order polylines to

be created.

Example:

Source points

Source points attribute table

Resulting polylines: ID Field = [PolylineID], No Order Used

Resulting polylines: ID Field = [PolylineID], Order field = [PointOrder]

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

PointsToPolylines

<input

dataset>

A String representing the input layer. Must be of Point type.

<output

dataset>

A String - the full name of the output layer.

<ID Field> A String - the name of the field which values will indicate the points used to form

a single Polyline feature.

{Order Field} A String - the name of a Numeric (integer or double) field which values will

indicate the order in which the points describe the polylines.If no Order field is

used the order is defined by the record number of the points.

{Z Field} A String - the name of the field which values will be used for Z values of the

vertices. "Features" can be used if the input points have Z.

{M Field} A String - the name of the field which values will be used for M values of the

vertices. "Features" can be used if the input points have M.

{Link Field} A String - the name of a field to be used as a link between the input points and

the output. The values for the first and last point that will form a single polyline

will be added to the polyline attribute table.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "PointsToPolylines", "input dataset", "output

dataset", "ID Field", "Order Field", "Z Field", "M Field","Link Field"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "PointsToPolylines" "input dataset" "output dataset" "ID

Field" "Order Field" "Z Field" "M Field" "Link Field"

.NET using

ETGWOutX.dll

PointsToPolylines(input dataset, output dataset, ID Field, Order Field, Z Field,

M Field,Link Field)

ArcPy arcpy.PointsToPolylines(input dataset, output dataset, ID Field, "Order Field",

"Z Field", M Field, Link Field)

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Points To Polygons

Running programmatically

Converts a point data set to a polygon dataset. Attaches to the polygon attribute table the values of
the attributes for the first and last point that form a single polygon

Inputs:

A point feature layer

REQUIRED: an ID field which value defines the points to be used for creation of

each polygon

OPTIONAL: an Order field that defines in what sequence the points describe the

polygon. If no Order field is used the order is defined by the record number of the

points

OPTIONAL: a Link field. The values for the first and last point that will form a

single polygon will be added to the polygon attribute table.

OPTIONAL: Z Value field. If specified a PolygonZ feature class will be created.

The values in this field will be set as Z values for the vertices. If the input points

have Z values, the user can specify the Z values of the input points to ve used by

selecting "Features" for Z Value field.

OPTIONAL: M Value field. If specified a PolygonM feature class will be created.

The values in this field will be set as M values for the vertices. If the input points

have M values, the user can specify the M values of the input points to ve used by

selecting "Features" for M Value field.

Outputs:

New polygon feature class

Fields to be added to the polyline attribute table

[ET_ID] - the field used as Polygon ID

[ET_FromAtt] - the values of the start point of the polygon in the Link field (if link

field is used)

[ET_ToAtt] - the values of the end point of the polygon in the Link field (if link field

is used)

Notes:

There should be at least three points with the same value in the ID field in order polygons to

be created.

Example: See the example for Points To Polylines function

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

PointsToPolygons

<input

dataset>

A String representing the input layer. Must be of Point type.

<output

dataset>

A String - the full name of the output layer.

<ID Field> A String - the name of the field which values will indicate the points used to form

a single Polygon feature.

{Order Field} A String - the name of a Numeric (integer or double) field which values will

indicate the order in which the points describe the polygons.If no Order field is

used the order is defined by the record number of the points.

{Z Field} A String - the name of the field which values will be used for Z values of the

vertices. "Features" can be used if the input points have Z.

{M Field} A String - the name of the field which values will be used for M values of the

vertices. "Features" can be used if the input points have M.

{Link Field} A String - the name of a field to be used as a link between the input points and

the output. The values for the first and last point that will form a single polyline

will be added to the polyline attribute table.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "PointsToPolygons", "input dataset", "output

dataset", "ID Field", "Order Field", "Z Field", "M Field","Link Field"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "PointsToPolygons" "input dataset" "output dataset" "ID

Field" "Order Field" "Z Field" "M Field" "Link Field"

.NET using

ETGWOutX.dll

PointsToPolygons(input dataset, output dataset, ID Field, Order Field, Z Field,

M Field,Link Field)

ArcPy arcpy.PointsToPolygons(input dataset, output dataset, ID Field, "Order Field",

"Z Field", M Field, Link Field)

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Points To Multipoints

Running programmatically

Converts a point data set to a Multipoint dataset

Inputs:

A point feature layer

REQUIRED: an ID field which value defines the points to be used for creation of

each multipoint.

OPTIONAL: an Order field that defines in what sequence the points describe the

multi-point. If no Order field is used the order is defined by the record number of

the points

OPTIONAL: a Link field. The values for the first and last point that will form a

single multi-point will be added to the polyline attribute table.

OPTIONAL: Z Value field. If specified, a MultipointZ feature class will be created.

The values in this field will be set as Z values for the vertices. If the input points

have Z values, the user can specify the Z values of the input points to ve used by

selecting "Features" for Z Value field.

OPTIONAL: M Value field. If specified, a MultipointM feature class will be created.

The values in this field will be set as M values for the vertices. If the input points

have M values, the user can specify the M values of the input points to ve used by

selecting "Features" for M Value field.

Outputs:

New multipoint layer

Fields to be added to the attribute table

[ET_ID] - the field used as Multipoint ID

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

PointsToMultipoints

<input

dataset>

A String representing the input layer. Must be of Point type.

<output

dataset>

A String - the full name of the output layer.

<ID Field> A String - the name of the field which values will indicate the points used to form

a single multipoint feature.

{Order Field} A String - the name of a Numeric (integer or double) field which values will

indicate the order in which the points describe the multipoints.If no Order field is

used the order is defined by the record number of the points.

{Z Field} A String - the name of the field which values will be used for Z values of the

vertices. "Features" can be used if the input points have Z.

{M Field} A String - the name of the field which values will be used for M values of the

vertices. "Features" can be used if the input points have M.

{Link Field} A String - the name of a field to be used as a link between the input points and

the output. The values for the first and last point that will form a single polyline

will be added to the polyline attribute table.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program

Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "PointsToMultipoints", "input dataset", "output

dataset", "ID Field", "Order Field", "Z Field", "M Field","Link Field"])

.NET using StartInfo.FileName = ETGWPath

ETGWRun.exe StartInfo.Arguments = "PointsToMultipoints" "input dataset" "output dataset"

"ID Field" "Order Field" "Z Field" "M Field" "Link Field"

.NET using

ETGWOutX.dll

PointsToMultipoints(input dataset, output dataset, ID Field, Order Field, Z

Field, M Field,Link Field)

ArcPy arcpy.PointsToMultipoints(input dataset, output dataset, ID Field, "Order

Field", "Z Field", M Field, Link Field)

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Points To Points Z(M)

Running programmatically

Converts a point dataset to a point Z (M) dataset

Inputs:

A point feature layer

REQUIRED: at least one numeric field with Z or M values that will be applied to

the newly created Points Z (M)

Outputs:

New point Z(M) feature class. All the original attributes are transfered.

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

PointsToPointsZM

<input

dataset>

A String representing the input layer. Must be of Point type.

<output

dataset>

A String - the full name of the output layer.

{Z Field} A String - the name of the field which values will be used for Z values of the

vertices. "Features" can be used if the input points have Z.

{M Field} A String - the name of the field which values will be used for M values of the

vertices. "Features" can be used if the input points have M.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program

Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "PointsToPointsZM", "input dataset", "output

dataset", "Z Field", "M Field"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "PointsToPointsZM" "input dataset" "output dataset" "Z

Field" "M Field"

.NET using

ETGWOutX.dll

PointsToPointsZM(input dataset, output dataset, Z Field, M Field)

ArcPy arcpy.PointsToPointsZM(input dataset, output dataset, Z Field, M Field)

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,

you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Multipoint To Point

Running programmatically

Converts a multipoint dataset to a point layer

Inputs:

A multipoint feature layer

Outputs:

New point layer

New fields are added to the point attribute table

[ET_ID] - the FID of original multipoints. The values can be used to link

the points back to the multipoints.

[ET_Z] - is added and populated with Z values if the multipoint is Z

aware

[ET_M] - is added and populated with M values if the multipoint is M

aware

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

MultipointsToPoints

<input

dataset>

A String representing the input layer. Must be of Multipoint type.

<output A String - the full name of the output layer.

dataset>

{Keep Z} A Boolean indicating whether if the input has Z values to keep them in the

output.

{Keep M} A Boolean indicating whether if the input has M values to keep them in the

output.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "MultipointsToPoints", "input dataset", "output

dataset", "Keep Z", "Keep M"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "MultipointsToPoints" "input dataset" "output dataset"

"Keep Z" "Keep M"

.NET using

ETGWOutX.dll

MultipointsToPoints(input dataset, output dataset, Keep Z, Keep M)

ArcPy arcpy.MultipointsToPoints(input dataset, output dataset, "Keep Z", "Keep M")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Multipoint To Polyline

Running programmatically

Converts a Multipoint dataset to a Polyline feature class

Inputs:

A Multipoint feature layer

Outputs:

New Polyline feature class

Notes :

The attributes of the original multipoints are transferred to the resulting polylines.

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

MultipointsToPolylines

<input

dataset>

A String representing the input layer. Must be of Multipoint type.

<output

dataset>

A String - the full name of the output layer.

{Keep Z} A Boolean indicating whether if the input has Z values to keep them in the

output.

{Keep M} A Boolean indicating whether if the input has M values to keep them in the

output.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "MultipointsToPolylines", "input dataset", "output

dataset", "Keep Z", "Keep M"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "MultipointsToPolylines" "input dataset" "output

dataset" "Keep Z" "Keep M"

.NET using

ETGWOutX.dll

MultipointsToPolylines(input dataset, output dataset, Keep Z, Keep M)

ArcPy arcpy.MultipointsToPolylines(input dataset, output dataset, "Keep Z", "Keep

M")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Shape Z (M) To Shape

Running programmatically

Converts a Z (M) data set to a plain (no Z or M) dataset

Inputs:

A Z aware or M aware feature layer

Point

Multipoint

Polyline

Polygon

Outputs:

New layer

The original attributes are preserved

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

ShapeZMToShape

<input

dataset>

A String representing the input layer.

<output

dataset>

A String - the full name of the output layer.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "ShapeZMToShape", "input dataset", "output

dataset"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "ShapeZMToShape" "input dataset" "output dataset"

.NET using

ETGWOutX.dll

ShapeZMToShape(input dataset, output dataset)

ArcPy arcpy.ShapeZMToShape(input dataset, output dataset)

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Shape To ShapeZ

Running programmatically

Converts the features of a data set to 3D features with constant Z value

Inputs:

A point, multipoint, polyline or polygon feature layer

REQUIRED: a numeric field with Z values that will be applied to the newly created

3D geometries.

Outputs:

New PointZ,MultipointZ, PolylineZ or PolygonZ (depending on the input) layer. All the

original attributes are transferred.

If the input is Polyline and Add M is selected, the M values for the polyline vertices will be

calculated based for each vertex on it's distance from the beginning of the polyline.

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

ShapeToShapeZ

<input

dataset>

A String representing the input layer.

<output

dataset>

A String - the full name of the output layer.

{Z Field} A String - the name of the field which values will be used for Z values of the

vertices. "Features" can be used if the input points have Z.

{Add M} A Boolean indicating whether to add M values to the output

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "ShapeToShapeZ", "input dataset", "output

dataset", "Z Field", "Add M"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "ShapeToShapeZ" "input dataset" "output dataset" "Z

Field" "Add M"

.NET using

ETGWOutX.dll

ShapeToShapeZ(input dataset, output dataset, Z Field, Add M)

ArcPy arcpy.ShapeToShapeZ(input dataset, output dataset, Z Field, Add M)

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Clip

Running programmatically

Clips a feature layer with the features of a polygon layer

Inputs:

Layer to be clipped - a Point, Multipoint, Polyline or Polygon layer

Clip layer - a polygon layer which features will be used for clipping

Outputs:

New layer (Point, Multipoint, Polyline or Polygon depending on the type of the original layer)

The attributes are preserved

The spatial reference of the input data set is preserved

Examples:

Input Layers

Result

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

ClipSingle

<input

dataset>

A String representing the input layer.

<Clip

Dataset>

A String representing the layer to be merged. Must be of Polygon type.

<output

dataset>

A String - the full name of the output layer.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "ClipSingle", "input dataset", "Clip Dataset",

"output dataset"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "ClipSingle" "input dataset" "Clip Dataset" "output

dataset"

.NET using

ETGWOutX.dll

ClipSingle(input dataset, Clip Dataset, output dataset)

ArcPy arcpy.ClipSingle(input dataset, Clip Dataset, "output dataset")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Batch Clip

Running programmatically

Clips a batch of feature layers with the features of a polygon layer

Inputs:

Layers to be clipped - a Point,Multipoint, Polyline or Polygon layers

Clip layer - a polygon layer which features will be used for clipping

Workspace where the clipped datasets will be stored

Outputs:

New layers (Point, Multipoint, Polyline or Polygon depending on the types of the original

layers)

The attributes are preserved

The spatial reference of the input data set is preserved

The new datasets will be named after the original layers with the user specified

suffix

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

BatchClip

<input

datasets>

A String - a list separated with ";" indicating the full paths to the datasets to be

clipped.

<clip

dataset>

A String representing the clip layer. Must be of Polygon type.

<output

workspace>

A String - the full name of the output folder (for shapefiles) or File GDB.

{Suffix} A String representing the suffix added to the output datasets.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "BatchClip", "input datasets", "clip dataset",

"output workspace", "Suffix"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "BatchClip" "input datasets" "clip dataset" "output

workspace" "Suffix"

.NET using

ETGWOutX.dll

BatchClip(input datasets, clip dataset, output workspace, Suffix)

ArcPy arcpy.BatchClip(input datasets, clip dataset, "output workspace", "Suffix")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Clip

Running programmatically

Erases a feature layer with the features of a polygon layer

Inputs:

Layer to be erased - a Point, Multipoint, Polyline or Polygon layer

Erase layer - a polygon layer which features will be used for clipping

Outputs:

New layer (Point, Multipoint, Polyline or Polygon depending on the type of the original layer)

The attributes are preserved

The spatial reference of the input data set is preserved

Examples:

Input Layers

Result

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

EraseSingle

<input

dataset>

A String representing the input layer.

<Erase

Dataset>

A String representing the layer to be merged. Must be of Polygon type.

<output

dataset>

A String - the full name of the output layer.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program

Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "EraseSingle", "input dataset", "Erase Dataset",

"output dataset"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "EraseSingle" "input dataset" "Erase Dataset" "output

dataset"

.NET using

ETGWOutX.dll

EraseSingle(input dataset, Erase Dataset, output dataset)

ArcPy arcpy.EraseSingle(input dataset, Erase Dataset, "output dataset")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Batch Erase

Running programmatically

Clips a batch of feature layers with the features of a polygon layer

Inputs:

Layers to be erased - a Point, Multipoint, Polyline or Polygon layers

Erase layer - a polygon layer which features will be used for clipping

Workspace where the erased datasets will be stored

Outputs:

New layers (Point, Multipoint, Polyline or Polygon depending on the types of the original

layers)

The attributes are preserved

The spatial reference of the input data set is preserved

The new datasets will be named after the original layers with the user specified

suffix

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

BatchErase

<input

datasets>

A String - a list separated with ";" indicating the full paths to the datasets to be

clipped.

<clip

dataset>

A String representing the Erase layer. Must be of Polygon type.

<output

workspace>

A String - the full name of the output folder (for shapefiles) or File GDB.

{Suffix} A String representing the suffix added to the erase datasets.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "BatchErase", "input datasets", "erase dataset",

"output workspace", "Suffix"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "BatchErase" "input dataset" "erase dataset" "output

workspace" "Suffix"

.NET using

ETGWOutX.dll

BatchErase(input dataset, erase dataset, output workspace, Suffix)

ArcPy arcpy.BatchErase(input dataset, erase dataset, "output workspace", "Suffix")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Merge Layers

Running programmatically

Merges two layers with the same geometry type into a single output layer.

Inputs:

Two layers with the same geometry type

Add all attributes - if the option is selected the attributes from both layers will be added to

the output.

Outputs:

New layer

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

MergeLayers

<input

dataset>

A String representing the input layer.

<merge

dataset>

A String representing the layer to be merged. Must be of the same geometry

type as the input layer.

<output

dataset>

A String - the full name of the output layer.

{All

Attributes}

Optional. A Boolean indicating whether the attributes of the Merge layer to be

transferred to the output.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "MergeLayers", "input dataset", "merge

dataset", "output dataset", "All Attributes"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "MergeLayers" "input dataset" "merge dataset" "output

dataset" "All Attributes"

.NET using

ETGWOutX.dll

MergeLayers(input dataset, merge dataset, output dataset, All Attributes)

ArcPy arcpy.MergeLayers(input dataset, merge dataset, "output dataset" , "All

Attributes")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Merge Feature Layers

Running programmatically

Merges layers from the same geometry type together into a single output layer.

Inputs:

A base layer. This layer defines what will be the type of the output. The fields of this layer

will be preserved. If the base layer has Z/M dimension, only layers with Z/M dimension can

be merged to it

Point, PointZ, PointM

Polyline, PolylineZ, PolylineM

Polygon, PolygonZ, PolygonM

Layers to merge. If the a field name has the same name as a field in the base layer, the

attributes will be retained.

Output file name

Outputs:

A feature class containing all the features from the base layer and the merge layers. If the

base layer has Z/M dimension, the output will have Z/M dimension as well. All the attributes

are retained (if the fields are present in the base layer)

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

MergeMulti

<Base

Dataset>

A String representing the input layer.

<merge

datasets>

A String representing a list (separator - ";") of layers to be merged to the base

dataset. All layers in this list be of the same geometry type as the base layer.

<output

dataset>

A String - the full name of the output layer.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "MergeMulti", "Base Dataset", "merge

datasets", "output dataset"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "MergeMulti" "Base Dataset" "merge datasets" "output

dataset"

.NET using

ETGWOutX.dll

MergeMulti(Base Dataset, merge datasets, output dataset)

ArcPy arcpy.MergeMulti(Base Dataset, merge datasets, "output dataset")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Advanced Merge

Running programmatically

Merges two polygon data sets. The result does not contain overlaps

Inputs:

Base layer - a polygon layer that will keep all attribute fields

Merge layer - a polygon layer that will be merged to the Base layer.

Priority of the Merge layer as described below

Priority - "Erase" - the polygons from the Base layer are erased with the polygons

of the Merge layer

Priority - "Low" - only the polygons (or portions of them) from the Merge layer that

do not overlap with these of the Base layer are added to the new layer

Priority - "Standard" - Creates intersections where the polygons from the Merge

layer intersect these from the base layer. The intersection polygons carry the

attributes of the corresponding polygons from both layers

Priority - "High" - The polygons from the Merge layer are entirely preserved. Only

these polygons (or portions of them) from the base layer that do not overlap with

the polygons from the Merge layer are added to the output.

Outputs:

New Polygon layer

No overlaps present. The polygons from the Base and the Merge layers are

overlaid depending the priority of the Merge layer

All the attributes of the Base layer are preserved

Only the attributes in fields with the same name and type as these from the Base

layer are preserved for the features from the Merge layer. Exception makes

priority "Standard" which copies the attributes from the merge layer as well.

Base layer always have a Priority "Standard"

Examples:

Input Layers

Base layer table

Merge layer table

Result: Priority of "-1" (Erase)

Result table

Result: Priority of "0" (Low)

Result table

Result: Priority of "1" (Standard)

Result table

Result: Priority of "2" (High)

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

AdvancedMerge

<input

dataset>

A String representing the input layer. Must be of Polygon type.

<merge

dataset>

A String representing the layer to be merged. Must be of Polygon type.

<output

dataset>

A String - the full name of the output layer.

<Merge

Priority>

Required. A string representing the priority of the polygons to be merged

Erase - the polygons from the Base dataset are erased with the

polygons of the Merge dataset.

Low - only the polygons (or portions of them) from the Merge dataset

that do not overlap with these of the Base layer are added to the new

dataset.

Standard - Creates intersections where the polygons from the Merge

dataset intersect these from the base layer. The intersection polygons

carry the attributes of the corresponding polygons from both datasets.

High - The polygons from the Merge dataset are entirely preserved.

Only these polygons (or portions of them) from the base dataset that

do not overlap with the polygons from the Merge dataset are added to

the output.

{All

Attributes}

Optional. A Boolean indicating whether the attributes of the Merge layer to be

transferred to the output.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "AdvancedMerge", "input dataset", "merge

dataset", "output dataset", "Merge Priority", "All Attributes"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "AdvancedMerge" "input dataset" "merge dataset"

"output dataset" "Merge Priority" "All Attributes"

.NET using

ETGWOutX.dll

AdvancedMerge(input dataset, merge dataset, output dataset, Merge Priority,

All Attributes)

ArcPy arcpy.AdvancedMerge(input dataset, merge dataset, "output dataset" ,

"Merge Priority", "All Attributes")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Split By Location

Running programmatically

Clips the features of the input layer with the polygons of the split layer. Creates a new dataset for the
features of the input layer (or portions of them) contained by each polygon from the split layer

Inputs:

Layer to be clipped - a Point, Multipoint, Polyline or Polygon layer

Clip layer - a polygon layer which features will be used for clipping

Output folder

Name field - a field from the Clip layer that will be used for naming of the output datasets

Prefix - a text that will be used together with the Name field for generating names of the

output datasets

Outputs:

New layers

The attributes are preserved

The spatial reference of the input data set is preserved

Notes:

If there are no features from the input layer that are fully or partially within a polygon from

the clip layer - no dataset will be created for this polygon

Examples:

The naming of the output dataset is based on the Name field selected and the prefix.

If the Prefix = "Rivers" and the Name field = "StateNames" the resulting feature classes will

be named

 - "Rivers_Nevada.shp"

 - "Rivers_Texas.shp"

 - "Rivers_Arizona.shp"

 -

If the prefix box is left empty and the Name field = "StateNames" the resulting feature

classes will be named

 - "Nevada.shp"

 - "Texas.shp"

 - "Arizona.shp"

 -

If the Prefix = "Roads" and the Name field = "StateNames" and in the output folder there is

an existing feature class named "Roads_Nevada.shp", the new feature class will be named

"Roads_Nevada1.shp"

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

SplitByLocation

<input

dataset>

A String representing the input layer.

<clip

dataset>

A String representing the clip layer.

<output

workspace>

A String - the full name of the output folder (for shapefiles) or File GDB.

<Name

Field>

A String - the name of the field which values are to be used for naming the

output datasets.

{Prefix} A String representing the prefix added to the names of the output datasets.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program

Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "SplitByLocation", "input dataset", "clip dataset",

"output workspace", "Name Field", "Prefix"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "SplitByLocation" "input dataset" "clip dataset" "output

workspace" "Name Field" "Prefix"

.NET using

ETGWOutX.dll

SplitByLocation(input dataset, clip dataset, output workspace, Name Field,

Prefix)

ArcPy arcpy.SplitByLocation(input dataset, clip dataset, output workspace, "Name

Field", "Prefix")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Split By Attributes

Running programmatically

Splits a layer into separate datasets based on an the attribute values in the selected field

Inputs:

Layer to be split - a Point, Multipoint, Polyline or Polygon layer

Output workspace (folder or File GDB)

Name field - a field from the input layer that will be used for splitting

Prefix - a text that will be used together with the Name field for generating names of the

output workspaces

Outputs:

New feature layers

The attributes are preserved

The spatial reference of the input data set is preserved

Examples:

The naming of the output workspace is based on the Name field selected and the prefix.

If the Prefix = "Rivers" and the Name field = "StateNames" the resulting feature classes will

be named

 - "Rivers_Nevada.shp"

 - "Rivers_Texas.shp"

 - "Rivers_Arizona.shp"

 -

If the prefix box is left empty and the Name field = "StateNames" the resulting feature

classes will be named

 - "Nevada.shp"

 - "Texas.shp"

 - "Arizona.shp"

 -

If the Prefix = "Roads" and the Name field = "StateNames" and in the output folder there is

an existing feature class named "Roads_Nevada.shp", the new feature class will be named

"Roads_Nevada1.shp"

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

SplitByAttributes

<input

dataset>

A String representing the input layer.

<output

workspace>

A String - the full name of the output folder (for shapefiles) or File GDB.

<Split Field> A String - the name of the field which values are to be used for splitting.

{Prefix} A String representing the prefix added to the names of the output datasets.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program

Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "SplitByAttributes", "input dataset", "output

workspace", "Split Field", "Prefix"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "SplitByAttributes" "input dataset" "output workspace"

"Split Field" "Prefix"

.NET using

ETGWOutX.dll

SplitByAttributes(input dataset, output workspace, Split Field, Prefix)

ArcPy arcpy.SplitByAttributes(input dataset, output workspace, "Split Field", "Prefix")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Transfer Polygon Attributes

Running programmatically

Transfers the attributes from one polygon layer (source) to another (target) based on their spatial
location (overlay). The user specifies the method for transferring the attributes of each field of the

source polygon attribute table.

Inputs:

Target layer - a polygon layer that will receive the attributes

Source layer - a polygon layer which attributes will be transferred to the target layer

Fields which values will be transferred

The method that will be used to transfer the values for each field. The methods are

discussed below

Count (only for numeric fields)

Value (only for numeric fields)

Type

Outputs:

New Polygon layer

All the attributes of the Target layer are preserved

The fields of the Source layer selected for transfer will be added to the attribute

table and their values will be calculated based on the transfer method specified

Transfer Methods:

The Source dataset has two polygons A and B. The Target dataset has a single polygon - Z. The
portion of the Target polygon that intersects with polygon "A" of the Source layer is polygon X, and

the portion that intersects with polygon B is polygon Y.

Count (sum proportion) - Typical application - transferring census data.

population_Z = population_A * area_X / area_A + population_B * area_Y / area_B

Value (weighted average) - Typical application - transferring rainfall data

rainfall_Z = (rainfall_A * area_X + rainfall_B * area_Y) / area_Z

Type (majority) - Typical application - transferring text data (soil type etc.)

IF area_X / area_Z > area_Y / area_Z THEN soiltype_Z = soiltype_A

IF area_X / area_Z < area_Y / area_Z THEN soiltype_Z = soiltype_B

Notes:

In order correct results to be obtained both Source and Target datasets should be clean

from overlaps

The procedure performs cleaning of both Source and Target datasets to avoid incorrect

results. The cleaning is performed on temporary datasets. No changes are applied to the

input data. If the target dataset has overlapping polygons, a new polygon representing the

overlap will be created in the output polygon dataset

The spatial references of the Source and the Target datasets must have the same

geographic coordinate system

Example:

Source Data

Transfer Methods

County - Type

Population - Count

Rainfall - Value

Results

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

TransferAttributes

<Source

Dataset>

A String representing the input layer. Must be of Polygon type.

<Target

Dataset>

A String representing the layer to be merged. Must be of Polygon type.

<output

dataset>

A String - the full name of the output layer.

<Transfer

Fields<

A String representing a list (separator ";") of the fields to transfer together with

the method for each field. Valid values - "Count", Value", "Type". Example:

"Field1 Value; Field2 Type; Field3 Count"

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "TransferAttributes", "Source Dataset", "Target

Dataset", "output dataset", "Transfer Fields"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "TransferAttributes" "Source Dataset" "Target Dataset"

"output dataset" "Transfer Fields"

.NET using

ETGWOutX.dll

TransferAttributes(Source Dataset, Target Dataset, output dataset, Transfer

Fields)

ArcPy arcpy.TransferAttributes(Source Dataset, Target Dataset, "output dataset" ,

"Transfer Fields")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Remove Exact Duplicates

Running programmatically

Removes duplicates with exactly the same shape from a Point, Multipoint, Polyline or Polygon
dataset.

Inputs:

A feature layer (Point, Multipoint, Polygon, Polyline)

OPTIONAL: A reference layer (Should have the same shape type as the input layer)

Outputs:

New Point, Multipoint, Polyline or Polygon dataset (depending on the input) with no features

with duplicate shapes present. If a reference dataset is specified, all the features from the

input dataset that have exactly the same shapes with a feature from the reference dataset

will be excluded from the output.

Notes:

If a reference dataset is used, the features from the input dataset that have exactly the

same geometry as features from the reference dataset will be removed.

If features with exactly the same shapes are found in the input dataset, only the first feature

will be saved in the output.

If you want to remove overlaps from partially overlapping geometries use Clean Polygon or

Clean Polyline functions

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

RemoveDuplicates

<input

dataset>

A String representing the input layer.

<output

dataset>

A String - the full name of the output layer.

{Reference

Dataset}

A String representing the reference layer.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "RemoveDuplicates", "input dataset", "output

dataset", "Reference Dataset"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "RemoveDuplicates" "input dataset" "output dataset"

"Reference Dataset"

.NET using

ETGWOutX.dll

RemoveDuplicates(input dataset, output dataset,Reference Dataset)

ArcPy arcpy.RemoveDuplicates(input dataset, output dataset,Reference Dataset)

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Symmetrical Difference

Running programmatically

Calculates the geometric intersection of the input polygon feature classes. Creates a polygon feature
class that contains the areas of both input datasets that do not overlap.

Inputs:

Two polygon feature classes

Add all attributes - if the option is selected the attributes from both layers will be added to

the output.

Outputs:

New polygon layer

Examples:

Input Layers

Result

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

SymmetricalDifference

<input

dataset>

A String representing the input layer. Must be of Polygon type.

<merge

dataset>

A String representing the layer to be merged. Must be of Polygon type.

<output

dataset>

A String - the full name of the output layer.

{All

Attributes}

Optional. A Boolean indicating whether the attributes of the Merge layer to be

transferred to the output.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program

Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "SymmetricalDifference", "input dataset",

"merge dataset", "output dataset", "All Attributes"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "SymmetricalDifference" "input dataset" "merge

dataset" "output dataset" "All Attributes"

.NET using

ETGWOutX.dll

SymmetricalDifference(input dataset, merge dataset, output dataset, All

Attributes)

ArcPy arcpy.SymmetricalDifference(input dataset, merge dataset, "output dataset" ,

"All Attributes")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,

you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Intersect Polygons

Running programmatically

Produces a new layer which is the geometric intersection of the two input polygon layers.

Inputs:

Two polygon layers to be intersected

Outputs:

New Polygon layer

The attributes of both input layers are preserved

The spatial reference of the input dataset is preserved

Notes:

The function works only for polygon with polygon intersections.

For intersection of layers with different geometries use

Polygons with Polylines

Clip and Spatial Join for polyline output

Point Intersection for Point output

Polylines with Polylines - Point Intersection

Polygons with Points - Spatial Join

Examples:

Input Layers

Result

Result overlayed with the inputs

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

IntersectPolygons

<input

dataset>

A String representing the input layer. Must be of Polygon type.

<Intersect

Dataset>

A String representing the layer to be used for intersect. Must be of Polygon

type.

<output

dataset>

A String - the full name of the output layer.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "IntersectPolygons", "input dataset", "Intersect

Dataset", "output dataset"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "IntersectPolygons" "input dataset" "Intersect Dataset"

"output dataset"

.NET using

ETGWOutX.dll

IntersectPolygons(input dataset, Intersect Dataset, output dataset)

ArcPy arcpy.IntersectPolygons(input dataset, Intersect Dataset, "output dataset")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Create new File GDB

Running programmatically

Creates a new File Geodatabase in the user specified location

Inputs:

Output Folder

Name for the new File GDB

Outputs:

A new File GDB

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

CreateFileGDB

<Output

Folder>

A String representing the folder where the output File GDB will be created.

<File GDB

Name>

A String representing the name of the File GDB to be created.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "CreateFileGDB", "Output Folder", "File GDB

Name"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "CreateFileGDB" "Output Folder" "File GDB Name"

.NET using

ETGWOutX.dll

CreateFileGDB(Output Folder, File GDB Name)

ArcPy arcpy.CreateFileGDB(Output Folder, File GDB Name)

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Buffer

Running programmatically

Creates buffer polygons from the features of the input dataset. The buffer distance (in the units of the
spatial reference of the input dataset) can be entered as a number (equal for all input features)or a

numeric field.

Inputs:

A point, multipoint, polyline or polygon feature layer

Buffer distance - a number (the same buffer distance will be used for all input polylines) or

the name of a numeric field in the polyline attribute table that has the buffer distance for

each input polyline.

Dissolve option - the boundaries of the intersecting buffers will be dissolved. The original

attributes will not be preserved if the dissolve option is used.

Outputs:

New polygon feature class

Notes :

The attributes of the input features will be transferred to the resulting polygons only if the

Dissolve option is NOT used.

For advanced buffering of polylines see the Buffer Polylines function.

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

Buffer

<input

dataset>

A String representing the input layer.

<output

dataset>

A String - the full name of the output layer.

{Buffer

Distance}

A Double representing the buffer distance in the units of the Spatial Reference

of the input layer.

{Buffer Field} A String representing the name of a field in the in the attribute table of the input

dataset. The field has the values for the buffer distance.

{Dissolve

Buffers}

A Boolean. If True - the boundaries of the intersecting buffers will be dissolved.

{Dissolve

Fields}

A String representing a list (separated with ";") with the field names to be used

for dissolving.

{Statistic

Fields}

A String representing a list (separated with ";") with the field names for which

statistics will be created. Example: "Field1 Sum;Field2 Max;Field3 Min"

{Create

Multiparts}

A Boolean indicating whether the function will create multipart polygons.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "Buffer", "input dataset", "output dataset",

"Buffer Distance", "", "Dissolve Buffers", "Dissolve Fields", "Statistic Fields",

"Create Multiparts"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "Buffer" "input dataset" "output dataset" "Buffer

Distance" "" "Dissolve Buffers" "Dissolve Fields" "Statistic Fields" "Create

Multiparts"

.NET using

ETGWOutX.dll

Buffer(input dataset, output dataset, Buffer Distance, "", Dissolve Buffers,

Dissolve Fields, Statistic Fields, Create Multiparts)

ArcPy arcpy.Buffer(input dataset, output dataset, "Buffer Distance", "", "Dissolve

Buffers", "Dissolve Fields", "Statistic Fields", "Create Multiparts")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Explode Multipart

Running programmatically

Explodes the milti-part features from a polygon or polyline layer. The resulting data set will not contain
multi-part features

Inputs

A polygon or polyline feature layer

Outputs

A layer with no multipart shapes present.

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

ExplodeMultipart

<input

dataset>

A String representing the input layer.Must be Polyline or Polygon type.

<output

dataset>

A String - the full name of the output layer.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program

Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "ExplodeMultipart", "input dataset", "output

dataset"])

.NET using StartInfo.FileName = ETGWPath

ETGWRun.exe StartInfo.Arguments = "ExplodeMultipart" "input dataset" "output dataset"

.NET using

ETGWOutX.dll

ExplodeMultipart(input dataset, output dataset)

ArcPy arcpy.ExplodeMultipart(input dataset, output dataset)

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Sort Shapes

Running programmatically

Sorts the features of a feature layer according to user specified fields and order methods.

Inputs:

A feature layer

Point

Multipoint

Polyline

Polygon

Fields to be used for sorting

Sort order for each field

Outputs:

New feature class sorted according the selected fields

How to use:

Select layer to be sorted and location for the new feature class

A list of all the fields in the layer is presented in a list box. Using the arrow buttons move the

fields to be used for sorting to the sort fields list box

Use the Up and Down buttons to arrange the fields in the order they will be used in the

sorting process. Click the Next button

For each field select sort order (Ascending or Descending). Clicking on the cell with the sort

order toggles the method

Click the Finish button

Notes:

The fields are used for sorting in the order they have in the selected fields list box

The function might be very useful:

if there are small polygons hidden beneath larger ones. In this case sorting

descending by the area will show all the polygons

if point data has to be displayed using Pie charts. If the points are close to each

other some of the pies might be hidden by the adjacent ones with larger values in

classification field. If the shapes are sorted in descending order using the

classification field the small pies will be visible on top of the big ones

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

SortShapes

<input

dataset>

A String representing the input layer.

<output

dataset>

A String - the full name of the output layer.

<Sort

Fields>

A String representing a list (separator ";") of the fields to be sorted together with

the sort nethod for each field. Example: "Field1 Ascending;Field2

Descending;Field3 Descending"

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program

Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "SortShapes", "input dataset", "output dataset",

"Sort Fields"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "SortShapes" "input dataset" "output dataset" "Sort

Fields"

.NET using

ETGWOutX.dll

SortShapes(input dataset, output dataset, Sort Fields)

ArcPy arcpy.SortShapes(input dataset, output dataset, "Sort Fields")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Move Shapes

Running programmatically

Moves the features of a feature layer according to user specified translation vector .

Inputs:

A feature layer

Point

Multipointoint

Polyline

Polygon

Delta X - movement in X direction

Delta Y - movement in Y direction

Outputs:

New layer

The attributes are preserved

The spatial reference of the input layer is preserved

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function MoveShapes

Name

<input

dataset>

A String representing the input layer.

<output

dataset>

A String - the full name of the output layer.

<Delta X> A Double representing the X component of the translation vector.

<Delta Y> A Double representing the Y component of the translation vector.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "MoveShapes", "input dataset", "output

dataset", "Delta X", "Delta Y"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "MoveShapes" "input dataset" "output dataset" "Delta

X" "Delta Y"

.NET using

ETGWOutX.dll

MoveShapes(input dataset, output dataset, Delta X, Delta Y)

ArcPy arcpy.MoveShapes(input dataset, output dataset, "Delta X", "Delta Y")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Rotate Shapes

Running programmatically

Rotates the features of a feature layer around user specified rotation point and rotation angle .

Inputs:

A feature layer

Point

Multioint

Polyline

Polygon

Rotation angle - angle in degrees staring from North counterclockwise.

Origin point for the rotation might be:

input X,Y

the first point of a reference layer

Outputs:

New feature class

The attributes are preserved

The spatial reference of the input layer is preserved

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

RotateShapes

<input

dataset>

A String representing the input layer.

<output

dataset>

A String - the full name of the output layer.

<Rotation

Angle>

A Double representing the rotation angle.

{Reference

Dataset}

A String representing the input layer. Must be of Point type. The first point of

this dataset will be used as origin point.

{Origin X} A Double representing the X coordinate of the origin point.

{Origin Y} A Double representing the Y coordinate of the origin point.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "RotateShapes", "input dataset", "output

dataset", "Rotation Angle", "Reference Dataset"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "RotateShapes" "input dataset" "output dataset"

"Rotation Angle" "Reference Dataset"

.NET using

ETGWOutX.dll

RotateShapes(input dataset, output dataset, Rotation Angle, Reference

Dataset)

ArcPy arcpy.RotateShapes(input dataset, output dataset, "Rotation Angle",

"Reference Dataset")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Scale Shapes

Running programmatically

Scales the features of a feature layer according to user specified anchor point X and Y scale factors .

Inputs:

A feature layer

Point

Multipoint

Polyline

Polygon

X scale factor

Y scale factor

Origin point for the scaling might be:

input X,Y

the first point of a reference layer

Outputs:

New layer

The attributes are preserved

The spatial reference of the input layer is preserved

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

ScaleShapes

<input

dataset>

A String representing the input layer.

<output

dataset>

A String - the full name of the output layer.

<Scale

Factor X>

A Double representing the Scale Factor in X direction.

<Scale

Factor Y>

A Double representing the Scale Factor in Y direction.

{Reference

Dataset}

A String representing the input layer. Must be of Point type. The first point of

this dataset will be used as origin point.

{Origin X} A Double representing the X coordinate of the origin point.

{Origin Y} A Double representing the Y coordinate of the origin point.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "ScaleShapes", "input dataset", "output

dataset", "Scale Factor X", "Scale Factor Y", "Reference Dataset"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "ScaleShapes" "input dataset" "output dataset" "Scale

Factor X" "Scale Factor Y" "Reference Dataset"

.NET using

ETGWOutX.dll

ScaleShapes(input dataset, output dataset, Scale Factor X, Scale Factor Y,

Reference Dataset)

ArcPy arcpy.ScaleShapes(input dataset, output dataset, "Scale Factor X", "Scale

Factor Y", "Reference Dataset")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Closest Feature Distance

Running programmatically

Calculates the distance for each feature of a dataset to the closest feature from the same dataset
(Point, Polyline or Polygon). The function is slow and can hang on large datasets. If the input dataset

is a Point one, we recommend using the Find Closest Point function added in version 11.1

Inputs:

A feature layer

Search tolerance - the maximum distance to search for neighboring features.

Outputs:

A new layer. The attribute table of the resulting layer will have three new fields

[ET_ID] - the ID of the feature

[ET_Dist] - the distance from the feature to the closest feature.

[ET_Closest] - the ID of the closest feature.

Notes:

If the distance from a feature to the closest feature is larger than the Search Tolerance then

the [ET_Dist] and [ET_ Closest] will have a value of -1

If the layer is of polygon type all the polygons that are within another polygon will have a

distance of 0. If the distance to the polygons boundaries has to be calculated, convert first

the polygon layer to a polyline one using Polygon To Polyline Wizard.

The larger the search tolerance is, the slower the process will be

The distance is calculated in the Spatial Reference of the input dataset.

If there are more than one feature with the same distance to a feature (for example

intersecting polylines) only one of the ID's will be recorded in the [ET_ Closest] field.

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

ClosestFeatureDistance

<input

dataset>

A String representing the input layer.

<output

dataset>

A String - the full name of the output layer

<Search

Tolerance>

A Double representing the Search Tolerance (in the units of the spatial

reference of the input layer)

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program

Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "ClosestFeatureDistance", "input dataset",

"output dataset", "Search Tolerance"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "ClosestFeatureDistance" "input dataset" "output

dataset" "Search Tolerance"

.NET using

ETGWOutX.dll

ClosestFeatureDistance(input dataset, output dataset, Search Tolerance)

ArcPy arcpy.ClosestFeatureDistance(input dataset, output dataset, "Search

Tolerance")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,

you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Select and Export

Running programmatically

Exports the features of a dataset to a new layer based on an attribute query.

Inputs:

A layer

SQL Expression. The expression builder can be used if executed from the ET GeoWizards

interface.

Outputs:

New layer

The output layer will contain only the selected features of the input dataset

The attributes of the input data set are preserved.

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

SelectAndExport

<input

dataset>

A String representing the input layer.

<output

dataset>

A String - the full name of the output layer.

<SQL

Expression>

A String representing the selection expression. Example: Shape_Area < 200

AND Name = 'a'

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "SelectAndExport", "input dataset", "output

dataset", "SQL Expression"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "SelectAndExport" "input dataset" "output dataset"

"SQL Expression"

.NET using

ETGWOutX.dll

SelectAndExport(input dataset, output dataset, SQL Expression)

ArcPy arcpy.SelectAndExport(input dataset, output dataset, "SQL Expression")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Project Layer

Running programmatically

Project the input layer to the projection of the reference layer

Inputs:

Input Layer - a Point, Multipoint, Polyline or Polygon layer

Reference Layer - a polygon layer which features will be used for clipping

Outputs:

New layer (Point, Multipoint, Polyline or Polygon depending on the type of the input layer)

The attributes are preserved

The features of the input layer projected to the spatial reference of the reference

layer

Notes:

It is hightly recommended the spatial reference of the input layer to have the same

Geographic Coordinate System as the spatial reference of the reference layer.

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

ProjectLayer

<input

dataset>

A String representing the input layer.

<Reference

Layer>

A String representing the reference layer.

<output

dataset>

A String - the full name of the output layer.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "ProjectLayer", "input dataset", "Reference

Layer", "output dataset"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "ProjectLayer" "input dataset" "Reference Layer"

"output dataset"

.NET using

ETGWOutX.dll

ProjectLayer(input dataset, Reference Layer, output dataset)

ArcPy arcpy.ProjectLayer(input dataset, Reference Layer, "output dataset")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Delete Multiple Fields

Running programmatically

Deletes multiple fields from a layer.

Inputs:

A feature layer

Point

Polyline

Polygon

Multipoint

Fields to be deleted

Outputs:

A new dataset.

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

DeleteMultipleFields

<input

dataset>

A String representing the input layer.

<output

dataset>

A String - the full name of the output layer.

<Field List> A String representing a list of field names (separated by ";") to be deleted.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "DeleteMultipleFields", "input dataset", "output

dataset", "Field List"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "DeleteMultipleFields" "input dataset" "output dataset"

"Field List"

.NET using

ETGWOutX.dll

DeleteMultipleFields(input dataset, output dataset, Field List)

ArcPy arcpy.DeleteMultipleFields(input dataset, output dataset, "Field List")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Order Fields

Running programmatically

Exports a feature layer to a new feature class. The user selects the fields to be exported and the
order in which they will appear in the attribute table.

Inputs:

A feature layer

Point

Multipoint

Polyline

Polygon

Fields to be exported

The order in which the fields will be added to the attribute table of the new feature class.

Outputs:

A new feature class. The fields in the attribute table are permanently ordered.

How to use:

Select a layer to be exported and a location for the new feature class

A list of all the fields in the layer is presented in a list box. Using the arrow buttons move the

fields to be exported to the order fields list box

Use the Up and Down buttons to arrange the fields in the order you want them to appear in

the attribute table.

Click the Finish button

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

OrderFields

<input

dataset>

A String representing the input layer.

<output

dataset>

A String - the full name of the output layer.

<Field List> A String representing an ordered list of field names (separated by ";") to be

copied in the output dataset.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program

Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "OrderFields", "input dataset", "output dataset",

"Field List"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "OrderFields" "input dataset" "output dataset" "Field

List"

.NET using

ETGWOutX.dll

OrderFields(input dataset, output dataset, Field List)

ArcPy arcpy.OrderFields(input dataset, output dataset, "Field List")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,

you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Redefine Fields

Running programmatically

Change field names and definitions.

Inputs:

A feature layer

Point

Multipoint

Polyline

Polygon

New field names, length, precision, scale

Outputs:

A new layer.

How to use:

Select a layer to be exported and a location for the new feature class

A list of all the fields in the layer is presented in a grid where the user can change the

names and definitions of the fields

Notes:

The type of the fields can be changed, but if the values in the original field cannot be

automatically converted to the type fo the redefined field, the values will net be populated in

the output.

The new field names should be max 10 characters long if the output is a shapefile

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

RedefineFields

<input

dataset>

A String representing the input layer.

<output

dataset>

A String - the full name of the output layer.

<Field List> A String representing a list of field names (separated by ";") together with their

definition {OldName NewName NewType NewWidth NewPrecision}.

Valid field types - STRING, INTEGER, LONG, SHORT, REAL, FLOAT,
DOUBLE, DATE

Example: "a b String 50;c d Integer 6;e f Double 8 3"

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program

Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "RedefineFields", "input dataset", "output

dataset", "Field List"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "RedefineFields" "input dataset" "output dataset" "Field

List"

.NET using

ETGWOutX.dll

RedefineFields(input dataset, output dataset, Field List)

ArcPy arcpy.RedefineFields(input dataset, output dataset, "Field List")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Copy Fields

Running programmatically

Copies fields from one dataset to another.

Inputs:

Input feature layer

Source feature layer - the layer that will be used as a source for the field definitions

Outputs:

A new layer. The attributes of the input layer will be preserved. The selected fields from the

source layer will be copied to the attribute table of the output layer

How to use:

Specify input and source layers

Specify output layers

Select fields from the source layer to be copied over and the order in which the field will be

added to the attribute table of the target layer

Notes:

The new fields will be added after the fields of the input layer

If the input attribute table has a field with the same name as a field selected to be copied,

the field name will be changed (suffix added) and added to the output

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

CopyFields

<input

dataset>

A String representing the input layer.

<Source

Dataset>

A String representing the input layer.

<output

dataset>

A String - the full name of the output layer.

<Field List> A String representing a list of the fields (separated with ";") to be copied.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "CopyFields", "input dataset", "Source Dataset",

"output dataset", "Field List"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "CopyFields" "input dataset" "Source Dataset" "output

dataset" "Field List"

.NET using

ETGWOutX.dll

CopyFields(input dataset, Source Dataset, output dataset,Field List)

ArcPy arcpy.CopyFields(input dataset, Source Dataset, output dataset,"Field List")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Create routes from existing polylines

Running programmatically

Creates routes by merging existing polylines that have the same common identifier.

Inputs

A Polyline feature layer

Route Identifier field

Method for route creation

Output Spatial Reference

Output:

A PolylineM feature class. The polylines are measured depending on the method selected -

based on the length of the polylines, the values of a single field or two fields (From Measure

and To Measure)

Measuring Methods

Using the lengths of the source polylines.

The user controls the direction of the routes by specifying the coordinate priority of

the starting measure (see notes)

If there are spatial gaps between the polylines to be joined, the user specifies

whether these gaps to be taken into account when assigning the measures (see

notes)

Using the values in a single numeric field

The user controls the direction of the routes by specifying the coordinate priority of

the starting measure (see notes)

If there are spatial gaps between the polylines to be joined, the user specifies

whether these gaps to be taken into account when assigning the measures (see

notes)

Using known measures in two numeric fields. From Measure and To Measure.

Very important factor in this case is the orientation of the original polylines. The

polylines must be oriented in the direction of increasing measure

Since known measures are used for each polyline, the Spatial Gaps parameter is

not used when using this method

Notes:

Coordinate Priority (not used if the third method above is used). This parameter defines the

direction of the output routes and the order in which the original polylines will participate in

the route. The available options are

Lower Left ("ll")

Lower Right ("lr")

Upper Right ("ur"

Upper Left ("ul")

The options are determined by the minimum bounding rectangle for each route. If the
"Lower Left" option is used the routes will start from South-West All original polylines will be
oriented to go in North-East direction and the measures will increase in this direction.

Original Polylines

Route - Coordinate Priority = "Lower Left"

Route - Coordinate Priority = "Lower Right"

Spatial Gaps: In many cases a route consists of disjoined parts A road for example that

have the same name on both sides of a river might be represented by a single route. For

such cases the user has to specify how the spatial gaps between the disjoined parts of the

route will be handled when calculating the measures.

Original Polylines

Ignore Spatial Gaps option selected - Continuous measurements

Ignore Spatial Gaps option not selected - The gap distance incorporated into the measures. The

straight-line distance between the disjoined nodes added to the measures

The user can specify output spatial reference that is different from the projection of the input

dataset. The Output Spatial Reference must have the same geographic coordinate system

as the input dataset

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

CreateRoutes

<input

dataset>

A feature layer. Must be of Polyline type.

<output

dataset>

A String - the full name of the output layer.

<ID Field> A String - the name of the field which values will be used as Route Identifier.

<Measure

From>

A String indicating where the measures will be taken from (see above). Valid

values:

"Length"

"SingleField"

"TwoFields"

{Measure

Field1}

A String - a field name to be used for source of the measures (SingleField

option) and From Measure (TwoFields option)

{Measure

Field2}

A String - a field name to be used for source of the To Measure (TwoFields

option only)

{Coordinate

Priority}

A String indicating the coordinate priority to be used (see above).Valid values:

"ll", "lowerleft", "sw", "south-west"

"lr", "lowerright", "se", "south-east"

"ul", "upperleft", "nw", "north-west"

"ur", "upperright", "ne", "north-east"

"b", "bottom", "s", "south"

"t", "top", "n", "north"

"l", "left", "w", "west"

"r", "right", "e", "east"

{Ignore

Gaps}

A Boolean indicating whether the spatial gaps to be ignored(see above).

{Max

Segments}

An integer indicating the maximum number of polylines to be included in a

single route.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "CreateRoutes", "input dataset", "output

dataset", "ID Field", "Measure From", "Measure Field1", "Measure Field2",

"Coordinate Priority", "Ignore Gaps", "Max Segments"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "CreateRoutes" "input dataset" "output dataset" "ID

Field" "Measure From" "Measure Field1" "Measure Field2" "Coordinate

Priority" "Ignore Gaps" "Max Segments"

.NET using

ETGWOutX.dll

CreateRoutes(input dataset, output dataset, ID Field, Measure From,

Measure Field1, Measure Field2, Coordinate Priority, Ignore Gaps, Max

Segments)

ArcPy arcpy.CreateRoutes(input dataset, output dataset, "ID Field", "Measure

From", "Measure Field1", "Measure Field2", "Coordinate Priority", "Ignore

Gaps", "Max Segments")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Google and Google Earth are trademarks of Google Inc

Copyright © Ianko Tchoukanski

file:///howtouse.htm
file:///customNet.htm
file:///howtouseInArcGIS.htm

Calibrate routes with points

Running programmatically

Adjusts route measures with existing points using measure information stored as attributes in the
Point Attribute Table or the M values of pointM dataset. The calibration process inserts new vertices

to the routes in the places where the calibration points intersect the routes. The measure value of
these vertices is set to the measure value of the corresponding point. The measures of the existing
vertices is adjusted according to the interpolation/extrapolation option selected and the adjustment

method selected.

Inputs

A PolylineM feature layer - to be calibrated

Route Identifier field

A Point or PointM feature layer - to be used for calibration

Point Route Identifier field

Point Measure field (only if the measures are to be taken from a field)

Search tolerance - only the points that are closer to the route than this tolerance will be used

for calibration

Interpolation/Extrapolation options

Adjustment method

Output Spatial Reference

Output:

A PolylineM feature class. The measures are adjusted based on the point dataset and the

options selected by the user

Interpolation options:

Three options are available. They can be used in any combination

Extrapolate before calibration points - the measures of the preexisting vertices before the

first calibration point will be adjusted

Interpolate between calibration points - the measures of the preexisting vertices between

the first and last calibration points will be adjusted

Extrapolate after calibration points - the measures of the preexisting vertices after the last

calibration point will be adjusted

Original route and Calibration points

All options used for calibration. The measures of the vertices before, between and after the
calibration points are adjusted

Only "Interpolate between" option used. The vertices before and after calibration points preserve their
original measures

Adjustment methods:

Shortest path distance - the distance between the measure points is used to establish the

calibration ratio. Then this ratio is applied to the preexisting vertices based on their distance

to the calibration points.

The existing measure distance - The measures of the calibration points are calculated

based on the existing measures. This measures are compared to the new measures to

establish the calibration ratio. Then this ratio is applied to the preexisting vertices based on

their M values points.

Notes:

Spatial Gaps: In many cases a route consists of disjoined parts A road for example that

have the same name on both sides of a river might be represented by a single route. For

such cases the user has to specify how the spatial gaps between the disjoined parts of the

route will be handled when calculating the measures.

Ignore Spatial Gaps option selected - Continuous measurements

Ignore Spatial Gaps option not selected - The gap distance incorporated into the measures. The
straight-line distance between the disjoined nodes added to the measures

The user can specify output spatial reference that is different from the projection of the

Routes Dataset. The Output Spatial Reference must have the same geographic coordinate

system as the Routes Dataset and the calibration points dataset

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

CalibrateRoutes

<Routes

Dataset>

A String representing the input layer. Must be of PolylineM type.

<Calibration

Dataset>

A String representing the calibration layer. Must be of Point type..

<output

dataset>

A String - the full name of the output layer.

<Route Key

Field>

A String representing a the Route Identifier field name in the Routes Dataset.

<Points Key

Field>

A String representing a the Route Identifier field name in the Calibration

Dataset.

<Calibration

Method>

A String indicating the Calibration Method to be used. Valid strings:

"Distance"

"Measure"

<Search

Tolearance>

A Double representing the search tolerance to be used (in the units of the

spatial reference of the Route Dataset).

{Use M} A Boolean indicating whether the M values of the Calibration Points to be used

(only if the calibration dataset has M values

{M Field} A String - the name of the field in the Calibration Dataset to be used for M

calibration values (if Use M = FALSE)

{Extrapolate

Before}

A Boolean indicating wheter to extrapolate before measure points (see

explanation above).

{Interpolate

Between}

A Boolean indicating wheter to interpolate between measure points (see

explanation above).

{Extrapolate

After}

A Boolean indicating wheter to extrapolate after measure points (see

explanation above).

{Ignore

Gaps}

A Boolean indicating whether the spatial gaps to be ignored(see above).

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "CalibrateRoutes", "Routes Dataset",

"Calibration Dataset", "output dataset", "Route Key Field", "Points Key Field",

"Calibration Method", "Search Tolearance", "Use M", "M Field", "Extrapolate

Before", "Interpolate Between", "Extrapolate After", "Ignore Gaps"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "CalibrateRoutes" "Routes Dataset" "Calibration

Dataset" "output dataset" "Route Key Field" "Points Key Field" "Calibration

Method" "Search Tolearance" "Use M" "M Field" "Extrapolate Before"

"Interpolate Between" "Extrapolate After" "Ignore Gaps"

.NET using

ETGWOutX.dll

CalibrateRoutes(Routes Dataset, Calibration Dataset, output dataset, Route

Key Field, Points Key Field, Calibration Method, Search Tolearance, Use M,

M Field, Extrapolate Before, Interpolate Between, Extrapolate After, Ignore

Gaps)

ArcPy arcpy.CalibrateRoutes(Routes Dataset, Calibration Dataset, "output dataset",

"Route Key Field", "Points Key Field", "Calibration Method", "Search

Tolearance", "Use M", "M Field", "Extrapolate Before", "Interpolate Between",

"Extrapolate After", "Ignore Gaps")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Google and Google Earth are trademarks of Google Inc

Copyright © Ianko Tchoukanski

file:///howtouse.htm
file:///customNet.htm
file:///howtouseInArcGIS.htm

Dissolve/Concatenate Event Tables

Running programmatically

Both Dissolve and Concatenate functions combine records in an event table if the events are on the
same route and have the same value in a specified field. The functions are available for line event

layers only. The wizard allows the resulting data to be added to the map as a line event layer or a
standalone table.

Dissolve will combine the events if their measures overlap

Concatenate will combine the events if the TO measure of one event is equal to the FROM

measure of the next event

Input

An line event layer

A dissolve/concatenate field - the values of the records in this field will be used for

dissolving/concatenating of the events

Output:

A new event table (DBF or within File GDB) with the aggregated events

The new table will contain all the original fields of the table of the input event layer

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

DissolveRouteEvents

Function

Name

ConcatenateRouteEvents

<Event

Table>

A String - the full path to the event table (DBF or table in File GDB).

<Output

Table>

A String - the full path to the output table (DBF or table in File GDB).

<Key Field> A String - the name of the route ID field in the event table .

<Dissolve

Field>

A String - the name of the field in the input table to be used for

Dissolve/Concatenate

<From

Measure

Field>

A String - the name of the From Measure field in the event table .

<To Measure

Field>

A String - the name of the To Measure field in the event table.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Dissolve Events

Language Syntax

Python subprocess.call([ETGWPath, "DissolveRouteEvents", "Event Table", "Output

Table", "Key Field", "Dissolve Field", "From Measure Field", "To Measure

Field")

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "DissolveRouteEvents" "Event Table" "Output Table"

"Key Field" "Dissolve Field" "From Measure Field" "To Measure Field"

.NET using

ETGWOutX.dll

DissolveRouteEvents(Event Table, Output Table, Key Field, Dissolve Field,

From Measure Field, To Measure Field)

ArcPy arcpy.DissolveRouteEvents(Event Table, Output Table, "Key Field", "Dissolve

Field", "From Measure Field", "To Measure Field")

Concatenate Events

Language Syntax

Python subprocess.call([ETGWPath, "ConcatenateRouteEvents", "Event Table",

"Output Table", "Key Field", "Dissolve Field", "From Measure Field", "To

Measure Field"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "ConcatenateRouteEvents" "Event Table" "Output

Table" "Key Field" "Dissolve Field" "From Measure Field" "To Measure Field"

.NET using

ETGWOutX.dll

ConcatenateRouteEvents(Event Table, Output Table, Key Field, Dissolve

Field, From Measure Field, To Measure Field)

ArcPy arcpy.ConcatenateRouteEvents(Event Table, Output Table, "Key Field",

"Dissolve Field", "From Measure Field", "To Measure Field")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Google and Google Earth are trademarks of Google Inc

file:///howtouse.htm
file:///customNet.htm
file:///howtouseInArcGIS.htm

Copyright © Ianko Tchoukanski

Locate features features along routes

Running programmatically

Creates an event layer (table) from the input route dataset and a feature layer.

Polygon - Finds the route and measure information at the geometric intersection of the input

polygon layer and the route layer and creates a line event polyline layer(or event table). The

output table will contain a route identifier, the FROM and TO measures of the route on

which each polygon was located. If a polygon intersects more than one route multiple

records will be created in the output table for this polygon.

Polyline - Finds the route and measure information for the polylines or parts of them that are

withing the search tolerance from the routes and creates a polyline layer (or event table).

The output table will contain a route identifier, the FROM and TO measures of the route on

which each polyline was located. If a polyline or parts of it are within the search tolerance to

more than one route multiple records will be created in the output table for this polyline.

Point - Finds the route and measure information for the points from a Point layer and

creates a point layer (or event table). Only the points that are within specified search

tolerance of routes will be recorded in the output table. The output table will contain a route

identifier and a measure for each point.

Inputs:

A PolylineM feature layer - the routes to be used

Route Identifier field - the values in this field will be recorded in the output event table

A Point, Polyline or Polygon feature layer which features will be located on the routes

Searc Tolerance if Points or Polylines are to be located.

Output:

A Point or Polyline layer or an event table(DBF or FileGdb) with event record for each event

located on the route

If the Add Attributes option is selected the output table will contain all the original fields of

the input dataset

Three/Two new fields will be added

[ET_RouteID] - the route identifier field. The values will correspond to the route on

which each polygon was located

[ET_FromM] - the FROM measure of each event(Polygon and Polylines)

[ET_ToM] - the TO measure of each event (Polygon and Polylines)

[ET_Measure] - the measure of each event (Points)

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

LocateFeaturesAlongRoutes

<input A feature layer. Must be of Point, Polyline or Polygon type.

dataset>

<Route

Layer>

A String - feature layer. Must be of PolylineM type.

<output

dataset>

A String - the full name of the output layer.

<Route Key

Field>

A String - the name of the route ID field in the route dataset

{Search

Tolerance}

A Double - the search tolerance (for Point or Polyline input datasets). For

Polygons use 0

{Otput Table} A Boolean - if TRUE only event table will be stored, if FALSE a feature layer will

be saved.

{Add

Atributes}

A Boolean - if TRUE the attributes of the input dataset will be copied to the

result.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "LocateFeaturesAlongRoutes", "input dataset",

"Route Layer", "output dataset", "Route Key Field", "Search Tolerance",

"Otput Table", "Add Atributes"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "LocateFeaturesAlongRoutes" "input dataset" "Route

Layer" "output dataset" "Route Key Field" "Search Tolerance" "Otput Table"

"Add Atributes"

.NET using

ETGWOutX.dll

LocateFeaturesAlongRoutes(input dataset, Route Layer, output dataset,

Route Key Field, Search Tolerance, Otput Table, Add Atributes)

ArcPy arcpy.LocateFeaturesAlongRoutes(input dataset, Route Layer, "output

dataset", "Route Key Field", "Search Tolerance", "Otput Table", "Add

Atributes")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Google and Google Earth are trademarks of Google Inc

Copyright © Ianko Tchoukanski

file:///howtouse.htm
file:///customNet.htm
file:///howtouseInArcGIS.htm

Create Features from Events

Running programmatically

Creates a feature layer from an event table (point or line) and a Input Table.

Inputs:

A Point or Line event table

A point event table needs to have two fileds

[Route ID] - corresponding to the route ID in the rout dataset

[Measure] - the measure of each point event

A line event table needs to have three fileds

[Route ID] - corresponding to the route ID in the rout dataset

[From Measure] - the start measure of a linear event

[To Measure] - the end measur of a linear event

Route Dataset

Event Type - Line or Point

Output:

A Point or Polyline layer depending on the type of the events

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

FeaturesFromRouteEvents

<Route

Layer>

A String - feature layer. Must be of PolylineM type.

<Input

Table>

A String - the full path to the event table (DBF or table in File GDB).

<output

dataset>

A String - the full name of the output layer.

<Route Key

Field>

A String - the name of the route ID field in the route dataset

<Event

Type>

A String - the Event Type. Valid values: "Line" or "Point"

<Event Key> A String - the name of the route ID field in the event table .

<From

Measure

Field>

A String - the name of the From Measure(for Line events) or Measure (for Point

events) field in the event table .

{To Measure

Field}

A String - the name of the To Measure(for Line events) field in the event table.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "FeaturesFromRouteEvents", "Route Layer",

"Input Table", "output dataset", "Route Key Field", "Event Type", "Event Key",

"From Measure Field", "To Measure Field"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "FeaturesFromRouteEvents" "Route Layer" "Input

Table" "output dataset" "Route Key Field" "Event Type" "Event Key" "From

Measure Field" "To Measure Field"

.NET using

ETGWOutX.dll

FeaturesFromRouteEvents(Route Layer, Input Table, output dataset, Route

Key Field, Event Type, Event Key, From Measure Field, To Measure Field)

ArcPy arcpy.FeaturesFromRouteEvents(Route Layer, Input Table, "output dataset",

"Route Key Field", "Event Type", "Event Key", "From Measure Field", "To

Measure Field")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Google and Google Earth are trademarks of Google Inc

file:///howtouse.htm
file:///customNet.htm
file:///howtouseInArcGIS.htm

Copyright © Ianko Tchoukanski

Cogo Inverse

Running programmatically

Converts a polyline or a polygon data set to a feature class containing only single segmented
polylines. For each segment the COGO attributes are calculated and added to the resulting attribute

table. The attributes of the original features are copied to the output features.

Inputs:

A Polyline or Polygon feature layer

Options:

Direction Angle Type - the type of the output angle for the direction of the segments

Direction Angle Units

DD - Decimal Degrees

DMS - Degrees Minutes Seconds

Rad - Radians

Grad - Gradians (One gradian is equal to 1/400 circle)

Gon - Gons - used in some European countries (One gon is equal to 1/400 circle)

Precision

Linear - integer indicating the number of places after the decimal point for the

output linear measurements

Angular - integer indicating the number of places after the decimal point for the

output angular measurements

Outputs:

New polyline feature class

Attribute fields added to the attribute table of the output feature class

Always

[Direction] - the direction of the segment. The angle can be measured in

arithmetic or geographic notation depending on the user choice

[Distance] - the length of the segment measured in the units of the

original dataset

[Delta] - for circular arcs only. The central angle of the circular arc in

degrees

[Radius] - for circular arcs only. The radius of the circular arc

[Tangent] - for circular arcs only. The distance from the Start/End points

of the circular arc to the intersection point of the tangents

[ArcLength] - for circular arcs only. The length of the circular arc

[Delta] - for circular arcs only. The central angle of the circular arc

[Side] - the side of the circular arc compared with the tangent in the start

point

User choice

[XStart] - X coordinate of the start point of the segment

[YStart] - Y coordinate of the start point of the segment

[XEnd] - X coordinate of the end point of the segment

[YEnd] -Y coordinate of the end point of the segment

User choice - shapes with Z values only

[ZStart] - Z coordinate of the start point of the segment

[ZEnd] - Z coordinate of the end point of the segment

[Slope] - the slope of the segment in degrees (from -90 to 90)

User choice - shapes with M values only

[MStart] - M coordinate of the start point of the segment

[MEnd] - M coordinate of the end point of the segment

Notes :

The Z or M fields will be added only if the source dataset has Z/M values

ET GeoWizards 12.0 cannot handle true arcs. If the source is File GDB make sure that

there are no true arcs in the input layer.

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

CogoInverse

<input

dataset>

A String representing the input layer. Must be of Polyline or Polygon type.

<output

dataset>

A String - the full name of the output layer.

<Point

Coordinates>

A Boolean - indicates whether the coordinates of the Start and End point for

each segment are to be added to the attribute table.

<Z

Attributes>

A Boolean - indicates whether the Z/M coordinates of the Start and End point

for each segment are to be added to the attribute table.

<Direction

Type>

Required. A String indicating the direction type to be used. Valid values:

"NorthAzimuth", "NA"

"SouthAzimuth", "SA"

"Polar"

"QuadrantBearing", "QB"

<Direction

Units>

Required. A String indicating the direction units to be used. Valid values:

"DecimalDegrees", "DD"

"DegreesMinutesSeconds", "DMS"

"Radians"

"Gradians""

"Gons", "QB"

{Linear

Precision}

An Integer representing the number of places after the decimal point for the

output linear measurements

{Angular An Integer representing the number of places after the decimal point for the

Precision} output angular measurements.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "CogoInverse", "input dataset", "output dataset",

"Point Coordinates", "Z Attributes", "Direction Type", "Direction Units", "Linear

Precision", "Angular Precision"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "CogoInverse" "input dataset" "output dataset" "Point

Coordinates" "Z Attributes" "Direction Type" "Direction Units" "Linear

Precision" "Angular Precision"

.NET using

ETGWOutX.dll

CogoInverse(input dataset, output dataset, Point Coordinates, Z Attributes,

"Direction Type", Direction Units, "Linear Precision", Angular Precision)

ArcPy arcpy.CogoInverse(input dataset, output dataset, "Point Coordinates" , "Z

Attributes", "Direction Type", "Direction Units", "Linear Precision", "Angular

Precision")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Lines from Points Direction and Distance

Running programmatically

Creates single segmented polylines from a point dataset that has in the attribute table fields which
values represent direction and distance from each point to the target point.

Inputs:

A Point dataset

Direction Field - a field in the attribute table that has the values for the directions of the lines

to be created

Distance Field - a field in the attribute table that has the values for the distances (length) of

the lines to be created

Direction Angle Type - the type of the output angle for the direction of the segments

Direction Angle Units

DD - Decimal Degrees

DMS - Degrees Minutes Seconds

Rad - Radians

Grad - Gradians (One gradian is equal to 1/400 circle)

Gon - Gons - used in some European countries (One gon is equal to 1/400 circle)

Outputs:

New polyline layer

The attributes of the input point features are preserved

Example :

Input Points

Point Attribute Table

Resulting Polylines

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

LinesFromPointDirDist

<input

dataset>

A String representing the input layer. Must be of Point type.

<output

dataset>

A String - the full name of the output layer.

<Direction

Field>

Required. A String representing the name of a field in the in the attribute table

of the input dataset field name. The field has the values for the directions of the

lines to be created.

<Distance

Field>

A String representing the name of a field in the in the attribute table of the input

dataset field name. The field has the values for the distances of the lines to be

created.

<Direction

Type>

Required. A String indicating the direction type to be used. Valid values:

"NorthAzimuth", "NA"

"SouthAzimuth", "SA"

"Polar"

"QuadrantBearing", "QB"

<Direction

Units>

Required. A String indicating the direction units to be used. Valid values:

"DecimalDegrees", "DD"

"DegreesMinutesSeconds", "DMS"

"Radians"

"Gradians""

"Gons", "QB"

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "LinesFromPointDirDist", "input dataset",

"output dataset", "Direction Field", "Distance Field", "Direction Type",

"Direction Units"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "LinesFromPointDirDist" "input dataset" "output

dataset" "Direction Field" "Distance Field" "Direction Type" "Direction Units"

.NET using

ETGWOutX.dll

LinesFromPointDirDist(input dataset, output dataset, Direction Field, Distance

Field, "Direction Type", Direction Units)

ArcPy arcpy.LinesFromPointDirDist(input dataset, output dataset, "Direction Field" ,

"Distance Field", "Direction Type", "Direction Units")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Points Along Polylines

Running programmatically

Creates points along the polylines of the input dataset.

The points are located on user specified relative distance from the start point of the

polylines.

The user can specify an offset distance and on which side of the polylines the offset points

will be created.

If "Both" option is selected for each polyline will be created 2 points (one on the left and one

on the right side), otherwise one point per polyline will be created.

Inputs:

A polyline feature layer

Relative distance along polylines. A value between 0 and 1 indicating the distance from the

from point as a ratio.

0 indicates the start point

0.5 indicates a point in the middle of the polyline

1 indicates the end of the polyline

Side of the points - three options are available

Both - 2 points will be created on both sides of the polylines

Left - one point per polyline will be created and will be located on the left side of

the polylines

Right - one point per polyline will be created and will be located on the right side of

the polylines

Offset -a distance from the polyline for the points to be created. If not specified, the points

will be on the polylines

Outputs:

New Point feature class with one or two (depending on the Side option) points per polyline

The attributes of the original polylines are preserved

The following fields are added to the point attribute table

[ET_ID] - the FID of original polylines.

[ET_Along] - the distance from the start point of the polyline to the point created.

[ET_Offset] - the distance of the point created to the corresponding polyline.

Notes:

The offset is measured in the units of the spatial reference of the input dataset

The output spatial reference is the one of the input polyline dataset

Examples:

Two Point datasets created

RIGHT:

Side = "Right"

Distance Along = 0.5

Offset Distance = 50 feet

LEFT:

Side = "Left"

Distance Along = 0.5

Offset Distance = 50 feet

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

PointsAlongPolylines

<input

dataset>

A String representing the input layer. Must be of Polyline type.

<output

dataset>

A String - the full name of the output layer.

<Relative

Distance>

A Double representing distance between the station lines.

<Side> Required. A String -This parameter defines on which side of the polyline the

station lines will be created:

"Both"

"Left".

"Right"

{Offset} A Double representing the Offset of the points created from the input polylines.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "PointsAlongPolylines", "input dataset", "output

dataset", "Relative Distance", "Side", "Offset From"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "PointsAlongPolylines" "input dataset" "output dataset"

"Relative Distance" "Side" "Offset"

.NET using

ETGWOutX.dll

PointsAlongPolylines(input dataset, output dataset, Relative Distance, Side,

Offset)

ArcPy arcpy.PointsAlongPolylines(input dataset, output dataset , "Relative

Distance", "Side", "Offset")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,

you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Points To Pie Segments

Running programmatically

Creates Pie segment polygons from points, pie direction, radius and central angle.

Inputs:

A Point dataset

Direction Field - a field in the attribute table that has the values for the directions of the

circular segments to be created. The direction defines the central radius of the segment.

Distance Field - a field in the attribute table that has the values for the radius of the circular

segments to be created

Central Angle Field - a field in the attribute table that has the values for the central angle of

the pie circular segments to be created

Direction Angle Type - the type of the output angle for the direction of the segments

Direction Angle Units

DD - Decimal Degrees

DMS - Degrees Minutes Seconds

Rad - Radians

Grad - Gradians (One gradian is equal to 1/400 circle)

Gon - Gons - used in some European countries (One gon is equal to 1/400 circle)

Outputs:

New polygon layer

The attributes of the input point features are preserved

Example :

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

PointsToPieSegments

<input

dataset>

A String representing the input layer. Must be of Point type.

<output

dataset>

A String - the full name of the output layer.

<Direction

Field>

Required. A String representing the name of a field in the in the attribute table

of the input dataset. The field has the values for the directions of the pies to be

created.

<Distance

Field>

A String representing the name of a field in the in the attribute table of the input

dataset. The field has the values for the distances of the pies to be created.

<Angle

Field>

A String representing the name of a field in the in the attribute table of the input

dataset. The field has the values for the central angle of the pies to be created.

<Direction

Type>

Required. A String indicating the direction type to be used. Valid values:

"NorthAzimuth", "NA"

"SouthAzimuth", "SA"

"Polar"

"QuadrantBearing", "QB"

<Direction

Units>

Required. A String indicating the direction units to be used. Valid values:

"DecimalDegrees", "DD"

"DegreesMinutesSeconds", "DMS"

"Radians"

"Gradians""

"Gons", "QB"

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "PointsToPieSegments", "input dataset", "output

dataset", "Direction Field", "Distance Field", "Angle Field", "Direction Type",

"Direction Units"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "PointsToPieSegments" "input dataset" "output

dataset" "Direction Field" "Distance Field" "Angle Field" "Direction Type"

"Direction Units"

.NET using

ETGWOutX.dll

PointsToPieSegments(input dataset, output dataset, Direction Field, Distance

Field, Angle Field, "Direction Type", Direction Units)

ArcPy arcpy.PointsToPieSegments(input dataset, output dataset, "Direction Field" ,

"Distance Field", "Angle Field", "Direction Type", "Direction Units")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Features To Convex Polygons

Running programmatically

Creates a convex polygon from each feature in the input feature class. Attributes of the original
features are transferred to the convex polygons.

Inputs:

A Polyline, Polygon or Multipoint feature class

Outputs:

A polygon feature class. All attributes of the original features are preserved

Examples:

Input Dataset

Result Dataset

Overlay

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

FeaturesToConvexPolygons

<input

dataset>

A String representing the input layer.

<output

dataset>

A String - the full name of the output layer.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "FeaturesToConvexPolygons", "input dataset",

"output dataset"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "FeaturesToConvexPolygons" "input dataset" "output

dataset"

.NET using

ETGWOutX.dll

FeaturesToConvexPolygons(input dataset, output dataset)

ArcPy arcpy.FeaturesToConvexPolygons(input dataset, output dataset)

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Features To Envelopes

Running programmatically

Creates a polygon from the envelope of each feature in the input feature class. Attributes of the
original features are transferred to the envelope polygons.

Inputs:

A Polyline, Polygon or Multipoint feature class

Expand distance. A distance in the units of the spatial reference of the input dataset with

which the envelope of each feature will be expanded. The parameter is optional. The default

value is 0.

Outputs:

A polygon feature class. All attributes of the original features are preserved

Examples:

Input Dataset

Result Dataset

Overlay

Expand parameter

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

FeaturesToEnvelopes

<input

dataset>

A String representing the input layer.

<output

dataset>

A String - the full name of the output layer.

{Expand

Tolerance}

A double - distance in the units of the spatial reference of the input dataset with

which the envelope of each feature will be expanded. The parameter is

optional. The default value is 0 - no expand.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "FeaturesToEnvelopes", "input dataset", "output

dataset", "Expand Tolerance"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "FeaturesToEnvelopes" "input dataset" "output

dataset" "Expand Tolerance"

.NET using

ETGWOutX.dll

FeaturesToEnvelopes(input dataset, output dataset,Expand Tolerance)

ArcPy arcpy.FeaturesToEnvelopes(input dataset, output dataset,Expand Tolerance)

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Features To Minimum Bounding Circles

Running programmatically

Creates a circular bounding polygon from each feature in the input feature class. Attributes of the
original features are transferred to the resulting polygons.

Inputs:

A Polyline, Polygon or Multipoint dataset

Outputs:

A polygon feature class. All attributes of the original features are preserved

Examples:

Input Dataset

Result Dataset

Overlay

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

FeaturesToCircles

<input

dataset>

A String representing the input layer.

<output

dataset>

A String - the full name of the output layer.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "FeaturesToCircles", "input dataset", "output

dataset"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "FeaturesToCircles" "input dataset" "output dataset"

.NET using

ETGWOutX.dll

FeaturesToCircles(input dataset, output dataset)

ArcPy arcpy.FeaturesToCircles(input dataset, output dataset)

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Features To Minimum Bounding Rectangles

Running programmatically

Creates a bounding rectangle from each feature in the input feature class. Three ways to align the
rectangles are available. Attributes of the original features are transferred to the resulting polygons.

Inputs:

A Polyline or Polygon feature class

The orientation of the rectangles to be created

Along the longest segment of the polygon boundary

Along the longest axis of the original polygons

Minimum area rectangle

Outputs:

A polygon feature class. All attributes of the original features are preserved

New fields added to the attribute table

ET_Length - the length longest side of the bounding rectangle in the units of the

Spatial Reference of the input feature class

ET Width - the length shortest side of the bounding rectangle in the units of the

Spatial Reference of the input feature class

Examples:

Bounding rectangle aligned with the longest segment of the boundary of the input polygon

Bounding rectangle aligned with the longest axis of the boundary of the input polygon

Minimum area bounding rectangle

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

FeaturesToRectangles

<input

dataset>

A String representing the input layer.

<output

dataset>

A String - the full name of the output layer.

{Alignment} A String defining the orientation of the rectangles to be created

"LongestSegment" - aligns the rectangle along the longest segment of

the polygon boundary

"LongestAxis" - aligns the rectangle along the longest axis of the

original polygons

"MinArea" - Minimum area rectangle"

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "FeaturesToRectangles", "input dataset",

"output dataset", "Alignment"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "FeaturesToRectangles" "input dataset" "output

dataset" "Alignment"

.NET using

ETGWOutX.dll

FeaturesToRectangles(input dataset, output dataset,Alignment)

ArcPy arcpy.FeaturesToRectangles(input dataset, output dataset,Alignment)

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,

you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Polygons to Equal Area Circles

Running programmatically

Creates a circular polygon with equal area for each polygon from the input feature class. The center
of the circle is located in the centroid of the original polygon. The attributes of the original features are

transferred to the resulting polygons.

Inputs:

A Polygon feature layer.

Outputs:

New polygon layer.

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

PolygonsToEqualAreaCircles

<input

dataset>

A String representing the input layer.

<output

dataset>

A String - the full name of the output layer.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "PolygonsToEqualAreaCircles", "input dataset",

"output dataset"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "PolygonsToEqualAreaCircles" "input dataset" "output

dataset"

.NET using

ETGWOutX.dll

PolygonsToEqualAreaCircles(input dataset, output dataset)

ArcPy arcpy.PolygonsToEqualAreaCircles(input dataset, output dataset)

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Polygons to Maximum Inscribed Circles

Running programmatically

Creates from each polygon in the input feature class a circular polygon representing the circle with
maximum radius that can be inscribed in the input polygon. The center of the is located in the

"deepest" point of each polygon. Attributes of the original features are transferred to the resulting
polygons.

Inputs:

A Polygon feature layer

Outputs:

A polygon layer. All attributes of the original features are preserved

A new field [ET_Radius] is added and populated for each polygon.

Note:

The function uses an interpolation algorithm and the precision of the calculation might not be 100%

Examples:

Example 1

Example 2 - Europe

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

PolygonsToMaxInscribedCircles

<input

dataset>

A String representing the input layer. Must be of polygon type.

<output

dataset>

A String - the full name of the output layer.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program

Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "PolygonsToMaxInscribedCircles", "input

dataset", "output dataset"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "PolygonsToMaxInscribedCircles" "input dataset"

"output dataset"

.NET using

ETGWOutX.dll

PolygonsToMaxInscribedCircles(input dataset, output dataset)

ArcPy arcpy.PolygonsToMaxInscribedCircles(input dataset, output dataset)

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Polygons to Deepest Points

Running programmatically

Creates from each polygon in the input feature class an inside point located farthest from the
polygons boundary. Attributes of the original features are transferred to the resulting polygons.

Inputs:

A Polygon feature layer

Outputs:

A point layer. All attributes of the original features are preserved

A new field [ET_Depth] is added and populated for each polygon.

Note:

The function uses an interpolation algorithm and the precision of the calculation might not be 100%

Examples (the center of the circle in the images below are the "deepest" points for each

polygon):

Example 1

Example 2 - Europe

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

PolygonsToDeepestPoints

<input

dataset>

A String representing the input layer. Must be of polygon type.

<output

dataset>

A String - the full name of the output layer.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "PolygonsToDeepestPoints", "input dataset",

"output dataset"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "PolygonsToDeepestPoints" "input dataset" "output

dataset"

.NET using

ETGWOutX.dll

PolygonsToDeepestPoints(input dataset, output dataset)

ArcPy arcpy.PolygonsToDeepestPoints(input dataset, output dataset)

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Create Station Lines

Running programmatically

Creates equally spaced lines along the polylines from the input dataset. The station lines are single
segmented polylines perpendicular to the input polylines (at the location of the station).

Inputs:

A polyline feature layer

Distance between stations

Side of the station lines - three options are available

Both - the middle of the station lines will intersect the original polylines

Left - station lines will be located on the left side of the polylines

Right - station lines will be located on the right side of the polylines

Length of the station lines can be specified

Constant - all the station lines will have the same user specified length

M Values - the M value of the input polylines (at the location of the station) will be

used for length of the station lines. The input polylines must have M values.

Z Values - the Z value of the input polylines (at the location of the station) will be

used for length of the station lines. The input polylines must have Z values.

Outputs:

New Polyline layer with single segmented polylines perpendicular to the input polylines,

distributed along the input polylines based on the user selected options.

The attributes of the original polylines are preserved

The following fields are added to the output attribute table

[ET_ID] - the FID of original polylines.

[ET_Angle] - the angle of the polyline at the station.

[ET_Station] - the distance from the start point of the polyline to the station line

[ET_Length] - the length of the station line

Notes:

The distance is measured in the units of the spatial reference of the input dataset

The output spatial reference is the one of the input polyline dataset

Examples:

Side = "Both", Step = 200 meters, Constant Length = 100 meters

Side = "Right", Step = 100 meters, Constant Length = 100 meters

Side = "Left", Step = 20 meters, Length from Z values

Running Programmatically

(Go to TOP)

Parameters

Expression Explanation

Function

Name

CreateStationLines

<input

dataset>

A String representing the input layer. Must be of Polyline type.

<output

dataset>

A String - the full name of the output layer.

<Station

Distance>

A Double representing distance between the station lines.

<Side> Required. A String -This parameter defines on which side of the polyline the

station lines will be created:

"Both"

"Left".

"Right"

<Length

From>

Required. A String - the source for the length of the station lines:

"C", "Constant" - any of the two values can be used

"Z", "ZValues" - any of the two values can be used

"M", "MValues" - any of the two values can be used

{Length} A Double representing the length of the station lines if "Constant" length option

is selected.

Running the function

ETGWPath used in the table below is the full path to ETGWRun.exe (E.G. "C:\Program
Files\ETSpatial Techniques\ETGeo Wizards\ETGWRun.exe")

Language Syntax

Python subprocess.call([ETGWPath, "CreateStationLines", "input dataset", "output

dataset", "Station Distance", "Length From", "Length"])

.NET using

ETGWRun.exe

StartInfo.FileName = ETGWPath

StartInfo.Arguments = "CreateStationLines" "input dataset" "output dataset"

"Station Distance" "Length From" "Length"

.NET using

ETGWOutX.dll

CreateStationLines(input dataset, output dataset, Station Distance, Length

From, Length)

ArcPy arcpy.CreateStationLines(input dataset, output dataset , "Station Distance",

"Length From", "Length")

Notes:

<> - required parameter

{} - optional parameter

See examples for Python , .NET or ArcPy

The argument separator for StartInfo.Arguments is space. If a string might contain a space,
you need to double quote it.

(Go to TOP)

Copyright © Ianko Tchoukanski

Free functions of ET GeoWizards

ET GeoWizards is not a free program. It has however many functions that are free - can be used with
the unregistered version with no limitations.

Note that the free functions are available only when executed from the User Interface. They are

not available if the functionality is executed from Python, .NET or ArcToolbox

List of Free Functions

Basic functions

Create New feature class

Create new File GDB

Sort Shapes

Move Shapes

Rotate Shapes

Scale shapes

Generate

Ungenerate

Explode multi-part features

Closest Feature Distance

Select and Export

Project Layer

Field Functions

Order Fields

Redefine Fields

Copy Fields

Delete Multiple Fields

Conversion functions

Polygon To Polyline

Polygon To Point

Polyline To Point

Polyline To Polygon

Polyline To Multipoint

Point To Polyline

Point To Polygon

Point To Multipoint

Point To Point Z (M)

Multipoint To Point

Multipoint To Polyline

Shape Z (M) To Shape

Shape To Shape Z

Overlay functions

Clip layer

Erase layer

Merge Layers

Sampling Functions

Create Point Grid

Vector Grid

Spatial Relations Functions

Convex Hull

Polyline functions

Generalize polyline layer

Densify polyline layer

Get PolylineZ characteristics

Flip Polylines

Point functions

Point Distance

Station Points

Copyright © Ianko Tchoukanski

	ET GeoWizards
	Instalation Instructions
	Validate Installation
	How To Register
	How to use ET GeoWizards
	How to use ET GeoWizards in ArcGIS
	ET GeoWizards in .NET
	ET GeoWizards and projections
	ET GeoWizards Data Formats
	Main Dialog
	ET GeoWizards Functions
	Spatial Relations & Allocation
	Spatial Join
	Near Feature
	Spider Diagram
	Spider Diagram Attribute Link
	Allocate
	Thiessen Polygons
	Concave Hull
	Convex Hull
	Transfer Polyline Attributes
	Find Closest Point
	Connect to Closest Point
	Connect Unstructured Points
	Cluster Polygons S
	Cluster Polygons C

	Import-Export
	Google Earth General
	Export to Google Earth
	Import from Google Earth
	Generate
	Ungenerate
	Import from MapInfo
	Import DXF
	Import from GeoJSON
	Export To GeoJSON
	Import from Open Street Map
	Import from ArcGIS Server
	Bulk Import from ArcGIS Server
	Import from WFS

	Sampling
	Vector Grid
	Point Grid
	Random Points On Polylines
	Random Points In Polygons
	Point Grids in Polygons
	Square Grids in Polygons
	Uniform Points in Polygons
	Create Tiles

	Point
	Clean Point
	Connect Points
	Disperse Points
	Perpendiculars To Polylines
	Point Angle and Position
	Point Global Snap
	Point Intersection
	Points To Rectengles
	Reverse Geocoding
	Station Points
	Thin Points
	Points to Regular Polygons

	Polyline
	Clean Polyline
	Clean Dangling Nodes
	Clean Pseudo Nodes
	Split Polyline
	Split Polylines With a Layer
	Polyline Global Snap
	Buffer Polylines
	Export Nodes
	Renode Polylines
	Generalize
	Densify
	Smooth
	Flip Polylines
	Clean Contour Gaps
	PolylineZ Characteristics
	Polyline Characteristics
	Flip PolylineZ

	Polygon
	Clean Polygon
	Eliminate
	Clean Gaps
	Dissolve
	Build Polygons
	Create Centerlines
	Polygon Global Snap
	Get Adjacent Polygons
	Partition Polygons with Polylines
	Aggregate Polygons
	Polygon To Polyline Advanced
	Generalize Polygons
	Densify Polygons
	Smooth Polygons
	Polygon Characteristics
	Fill Polygon Holes

	Conversion
	Polygon To Polyline
	Polygon To Point
	Polyline To Point
	Polyline To Polygon
	Polyline To Multipoint
	Point To Polyline
	Point To Polygon
	Point To Multipoint
	Point To Point Z (M)
	Multipoint To Point
	Multipoint To Polyline
	Shape Z (M) To Shape
	Shape To ShapeZ

	Overlay
	Clip
	Batch Clip
	Erase
	Batch Erase
	Merge Layers
	Merge Multiple Layers
	Advanced Merge Polygons
	Split By Location
	Split By Attributes
	Transfer Polygon Attributes
	Remove Duplicates
	Symmetrical Difference
	Intersect Polygons

	Basic
	New File GDB
	Buffer
	Explode Multipart Features
	Sort Shapes
	Move Shapes
	Rotate Shapes
	Scale Shapes
	Closest Feature Distance
	Select and Export
	Project Layer

	Fields
	Delete Multiple Fields
	Order Fields
	Redefine Fields
	Copy Fields

	Linear Referencing
	Create Routes
	Calibrate Routes
	Dissolve Events
	Concatenate Events
	Locate Features
	Events To Features

	Miscellaneous
	Cogo Inverse
	Lines from Points Direction and Distance
	Points Along Polylines
	Points to Pie Segments
	Features To Convex Polygons
	Features To Envelopes
	Features To Bounding Circles
	Features To Rectangles
	Polygons to Equal Area Circles
	Polygon to Max Inscribed Circle
	Polygons To Deepest Points
	Station Lines

